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A B S T R A C T 	
	

In this paper, a novel approach for estimation of global solar irradiance is proposed based on a 
combination of empirical correlation and ant colony optimization. Empirical correlation has been used 
to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony 
Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the 
coefficients of linear and nonlinear empirical models. The performance of the models is investigated 
for estimation of global solar irradiance at different climatic regions of Iran based on statistical 
indicators like coefficient of determination (R2) and root mean square error (RMSE). The results 
obtained from the proposed model are superior in comparison with the other well established models. 

 

1.	INTRODUCTION1	

Solar Irradiance (SI) is one of the important parameters 
for designing solar systems. In developing countries, the 
Global Solar Irradiance (GSI) measurements are usually 
reported based on measurements made at small number 
of solar observation stations. Hence, to alleviate the 
problems, mathematical models are used to accurately 
estimate the GSI [1]. 
Numerous studies have been conducted to estimate the 
SI based on available data such as temperature, 
moisture, elevation, solar irradiance hours, cloudiness, 
wind speed, etc. [1-4]. These approaches can be 
categorized in two categories, empirical models and 
intelligent models [1]. 
The main advantage of the empirical models is their 
simplicity. However, they suffer from low models. 
Intelligent models like ANN (Artificial Neural 
Network) have high complexity during training process, 
but these methods have higher accuracy for the SI 
estimation in comparison to the empirical based models. 
As an empirical based model, Angstrom [1, 2] proposed 
the first relation for the GSI prediction using sunshine 
hours. Prescott [1] improved Angstrom model. 
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For intelligent models, Edalati and colleagues [2] 
offered an ANN model for prediction of the SI data.  
In this study, the Ant Colony Optimization (ACO) 
Algorithm was used to estimate the monthly average 
daily GSI for various climate cities of Iran,  based on 
minimization of a fitness function. 
In the proposed approach, the optimized coefficients of 
the empirical equations (both linear and nonlinear 
empirical models) are estimated by using the ant colony 
optimization algorithm to evaluate the monthly average 
daily GSI. Obtained results are evaluated through a 
validation data series. The proposed approach doesn’t 
need a difficult training and can estimate the solar 
irradiance with a higher accuracy compared to the 
empirical and intelligent models.  
The remainder of this paper is organized in the 
following manner. The linear and nonlinear empirical 
equations are discussed in section 2. The concept of Ant 
Colony Optimization and its overall progress are 
reviewed in section 3. The proposed methodology to 
find the optimal empirical coefficients and the SI 
estimation based on the Ant Colony Optimization are 
investigated in section 4. Results and discussions are 
presented in section 5. A conclusion followed by 
references is presented in section 6. 
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2.	EMPIRICAL	EQUATIONS	FOR	SI	ESTIMATION		

Various studies have been reported which have defined 
empirical equations to estimate the SI estimating by 
using meteorological information [1]. These equations 
are based on the proposed equations that use the 
information such as cloudiness, sunshine hours, and 
temperature. These mathematical equations can be 
classified into two categories: 1) linear (proposed by 
Angstrom [1, 2]), and 2) nonlinear. Prescott [1] 
modified the Angstrom’s model using the linear 
regression as follows: 
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where H  is the GSI, oH  is extraterrestrial solar 
irradiance, S  is the actual sunshine hours, oS  is 
maximum sunshine duration, and a and b are the 
empirical coefficients. 
Other linear models were proposed with more 
meteorological parameters. Swartman and Ogunlade [1] 
proposed another linear model using more 
meteorological parameters, also Abdallah suggested 
following linear models: 
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where, T is the daily mean air temperature, RH is the 
relative humidity and a, b, c, and d are the empirical 
coefficients. Ogelman et al. (1984), Akinoglu and 
Ecevit (1990) have added a nonlinear part to the 
Angstrom model as follows:  
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A third order polynomial model for the GSI prediction 
was presented by Bahel et al. as follows: 
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A nonlinear exponential model using the solar 
irradiance and sunshine hours was proposed by 
Almorox and Hontoria as follows: 
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A GSI prediction model was suggested by Bakirik as 
follows: 
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Ampratwum and Dorvol preposed a logarithmic model 
as follows: 

)log(
oo S

S
ba

H

H
  

All the above equations are classified in [1]. 

3.	 ANT	 COLONY	 OPTIMIZATION	 (ACO)	
ALGORITHM	

The Ant Colony Optimization (ACO), proposed by 
Dorigo et al., is a solution for combinational problems 
[5]. The ACO is a swarm intelligence technique. Its 
main idea is originally inspired from the biological 
behavior of the ants and specifically the way that they 
communicate with each other for finding food. This 
inspiration is related to ability of ants for finding the 
short paths in their movement from and to their nests 
when searching for food [5]. However, ants 
communicate with each other through pheromones. Fig. 
1 represents a simple example of ants' behavior. There 
are two ants in this figure that start at the same time and 
leave their nest in different directions looking for the 
food. As they move forward, they build a pheromone 
trail that evaporates slowly which is recognizable by 
other ants. If no pheromone initially exists outside the 
nest, the ants’ paths are randomly initiated. Let us 
consider an example in which ant 1 finds food source 1 
while ant 2 is still searching randomly. Then ant 1 picks 
up some of the food and goes back toward the nest by 
tracing its own pheromone trail, putting additional 
pheromone on its way back. The Ant 1 arrives at the 
nest almost at the same time as the ant 2 finds food 
source 2. When the next group of ants leaves the nest 
looking for food, they detect twice as much pheromone 
on the path toward food source 1 than on the path 
toward food source 2. Thus, the probability that the ants 
take path to food source 1 is higher than the other paths. 
As ants further travel, they lay more pheromone on the 
path. This means that the ants efficiently collect and 
bring food source 1 to the nest. When food source 1  is 
over, the rest of ants return to the nest without any food, 
but some of them randomly continue beyond  food 
source 1, and find new sources of food, such as the 
remains at  food source 2 [5].	

	
Figure 1. Illustration of ants movement searching for food 
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The ACO algorithms attempt to exploit the efficiency of 
ant travelling behavior by creating a similar 
environment of possible paths, and simulating the ants’ 
movements along these paths. Each ant chooses a 
different path which may lead to different solutions in 
the problems search space, simulating the idea of 
depositing pheromone on each ant’s passes through a 
path. This strategy improves the ACO algorithms by 
avoiding traps in local optima [5]. 

3.1.	The	ACO	Procedure	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	An ACO 
algorithm can be applied to an optimization problem 
using the following steps [5]: 
 Representation of the problem: the problem must be 
described using a graph including a set of nodes and 
edges between nodes. 
 Heuristic desirability ( ) of the edges: A desirable 

heuristic indicator of goodness of paths from one node 
to every other connected node in the graph. 
 Solution construction: A mechanism to efficiently 
construct solutions. 
 Pheromone updating rule: A suitable method of 
updating the pheromone levels on edges is required with 
a corresponding evaporation rule such as selecting the 
best ants and updating the paths they chose. 
 Probability of transition: The rule determines the 
probability of an ant traversing from one node in the 
graph to the next. 
A suitable heuristic fitness of traversing could be any 
evaluation function. The probabilistic transition rule 
which is a combination of the heuristic desirability of 
traversal and edge pheromone levels, denotes the 
probability of an ant at feature i deciding to travel to 
feature j at time t:  
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where, k is the kth ant, 0 and 0  determine the 
relative effect of the pheromone trail and the heuristic 
desirability in which   and   are determined 

experimentally, ji, is the value of pheromone for the 

ijth path of the ACO algorithm, ji,  is heuristic 

desirability for the ijth path of the algorithm, and T 
represents the total number of paths not yet visited by 
the ant.  
As seen in Equation 9, the probability of transition is 
determined using the pheromone and heuristics of the 
trail which is related to the cost of the ijth path. This 
path is acceptable when a higher probability is obtained 

as a result of high quantity of pheromone or heuristic 
desirability [5]. Therefore, the ant that traverses through 
the ijth path has to produce higher pheromones amount 
to increase the probability of selecting current path in 
the next iteration. After all ants return to the nest, the 
pheromone level is updated as follows: 
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where, )1,0(  is the evaporation rate of pheromone 

trail, and m is number of ants. The role of   is to avoid 

unlimited congestion of the pheromone trails which 
leads to forget previous wrong decisions. For the paths 
not chosen by the ants, the pheromone strength is 

exponentially decreased in each iteration. The )(, tk
ji

denotes the kth ant  pheromone deposits on the paths 
defined as follows [5]: 
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where )(tLk  denotes the length of the tour for the kth 

ant. According to Equation 11, the shortest ant’s tour 
receives more pheromone. The steps of the standard 
ACO algorithm are shown in Fig. 2 as described below 
[5]: 

(a) Read the input data; 
(b) Initialize the system parameters; 
(c) Creating the graph for each ant including nodes and 
edges; 
(d) Update the list of feasible operation and probability 
values to schedule ants next operation; and 
(e) If ants reached food node, select the best solution, 
update the pheromones, and control the stopping 
criterion [5]. 

4.	 THE	 PROPRSED	 SI	 ESTIMATION	 METHOD	
BASED	 ON	 EMPIRICAL	 EQUATIONS	 AND	 THE	
ACO	ALGORITHMSI		

In the proposed method of this study, the ACO 
algorithm exploration capability was used for finding 
the optimize coefficients in the empirical (linear and 
non-linear) models and estimating the GSI according to 
the input dataset. The steps of the proposed method are 
described as follows: 
Step 1: Split the input dataset (measures) into training 
and validation sets- The dataset including input 
measures collected from meteorological department was 
divided into two categories: 1) training data set for 
installation, and 2) validation data series. In this study, 
for Esfahan city, 111 months are considered for 

(9) 

(10) 

(11)
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installation data from 1985 until 2001, and 45 months 
for validation purpose. 
Step 2: Compute the fractions for training and validation 
datasets; The fractions of possible monthly average 
daily GSI and sunshine duration, i.e.,  

oH

H   and  
oS

S   

are computed for installation and validation datasets. 
Step 3: Estimate the empirical coefficients using the 
ACO algorithm; The obtained results in Step 2, are used 
in the ACO algorithm to find the optimize candidates of 
the coefficients of the empirical equations. The 
minimization fitness function is defined as follows and 
is illustrated in Fig. 3:  
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Figure 2. The flowchart of the standard ACO algorithm 
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are the computed and 

estimated fractions of possible monthly average daily 
GSI, respectively for the ith sample, H  is the GSI, 

oH  

is extraterrestrial solar irradiance, and m  illustrates the 
cumulative observations (details of extraterrestrial solar 
irradiance [

oH ] calculation is provided in [1]). The 

ACO algorithm stops when the stopping criterion is 
satisfied. 
Step 4: Validation of the results; For each run of the 
algorithm, the optimized empirical coefficients reported 
by the ACO are validated using the validation dataset. If 

the GSI measures using empirical coefficients obtained 
from the ACO algorithm agree with the estimated GSI 
computed values using the validation series (the 
minimum requirement of 80% is considered in this 
study), the optimize empirical coefficients are selected, 
and otherwise thee algorithm goes to Step 3. 

 

Figure 3. General flowchart of the SI estimation using 
combination of the ACO and empirical equations 

Accuracy of the obtained empirical coefficients was 
investigated in terms of the coefficients of 
determination (R2) and Root Mean Square Error 
(RMSE). The values of R2 and the RMSE were 
computed using Equations 13 and 14, respectively: 
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5.	RESULTS	AND	DISCUSSION	

The proposed ACO algorithm was implemented in 
MATLAB software and applied for estimation of the 
monthly average daily GSI on horizontal surface for 
four different climatic stations (Esfahan, Hamadan, 
Tabriz, and Orumieh) in Iran. The geographical features 
of these stations are shown in Fig. 4. The input features 
such as minimum and maximum temperature, sunshine 
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hours, relative moisture, elevation etc., were collected 
from Iran Meteorological department. Table 1. 
represents the geographical data including longitude and 
latitude of four stations considered in this study. The 
range of installation and validation datasets is shown in 
Table 1. The method proposed in [6] was used to check 

the accuracy of the measurements. The OH

H

  and  OS

S

 
were separately computed for installation and validation 
datasets for all four stations. Tables 2. & 3. show the 

OH

H

 and OS

S

 for sixteen sample months of Hamadan and 
Tabriz stations, typically. These samples are 1, 11, 21, 
31, 41, 51, 61, 71, 81, 91, 101, and 111 months for 
installation data and 121, 131, 14, and 151 months for 
validation data series. 
Linear empirical equations used in this study include 
Angstrom-Prescott (Equation 1) and Abdallah (Equation 
3), (called Model 1 and Model 2, respectively). 
Nonlinear empirical equations are proposed in Equation 
4 and Equation 8, hereafter defined as Model 3 and 
Model 4, respectively. 
Performance of the ACO is satisfactory using the 
parameters values shown in Tables 4. & 5. includes the 
coefficients of a, b, c, and d for four tested empirical 

models on the four sample cities using the ACO. For 
comparison purpose, the same datasets were used for 
performance evaluation of the ACO, the SRTs, and the 
ANN on the GSI modeling. The empirical coefficients 
for these models were separately computed for four 
sample cities using the SRTs (Least absolute deviations 
method) explained in [1]. An ANN model was trained 
using the Levenberg–Marquardt algorithm with sigmoid 
and linear transfer functions in the hidden and output 
layers, respectively. The ANN model was implemented 
in neural network toolbox in MATLAB [2, 7]. 
Table 6. shows the results of R2 and the RMSE obtained 
for GSI using different models based on the ACO, the 
SRT, and the ANN models. The results reveal the 
superiority of combination of the ACO and linear 
Angstrom model (ACO & Model 1) compared to other 
models for the SI estimation with an R2 greater than 
0.96, and the RMSE smaller than 0.0018 on the four 
stations. Among all sample stations, the best result was 
obtained using combination of the ACO and Angstrom 
model (ACO & Model 1) for Esfahan with R2 = 0.9961, 
and the RMSE = 0.0012,  and the worst result was for 
Orumieh with R2= 0.8387, and RMSE= 0.2610 for the 
SRT and Abdallah model (SRTs & Model 2).  

 

TABLE 1. Information of four sample stations in Iran 

City name Longitude 
° E 

Latitude 
° N 

Altitude 
(m) 

Installation 
data period 

Validation data 
period 

Esfahan 51.67 32.62 1550.4 1985 -2001 2002-2005 
Hamadan 48.53 34.87 1741.5 1985 -2001 2002-2005 
Orumieh 45.05 37.67 1328.0 1985 -2001 2002-2004 
Tbriz 46.28 38.08 1361.0 1987 -2001 2002-2005 

 
Figure 4. Geographical positions of sample stations in Iran 

The R2
average and the RMSEaverage values for all nine 

testing methods were estimated and compared to each 
other, as shown in Fig. 5 The following conclusions 
have been extracted from Fig. 5: 
 The results of the ACO combined with linear and 
nonlinear empirical models were acceptable with an 
average R2

 greater than the 0.94, and an average RMSE 

less than the 0.019 for all chosen stations, which reveals 
satisfactory performance of the empirical models. 

TABLE 2. Sample estimated values of  OH

H

 and  OS

S

for both 
data types on Hamadan station 

Data series Months 

OH

H 

OS

S

Installation 1 0.510 0.447 
Installation 11 0.485 0.485 
Installation 21 0.513 0.512 
Installation 31 0.424 0.421 

Installation 41 0.423 0.398 
Installation 51 0.500 0.423 
Installation 61 0.681 0.779 
Installation 71 0.554 0.878 
Installation 81 0.529 0.891 
Installation 91 0.844 0.850 
Installation 101 0.759 0.633 
Installation 111 0.796 0.774 
Validation 121 0.620 0.619 
Validation 131 0.597 0.598 
Validation 141 0.591 0.678 
Validation 151 0.693 0.700 

 Comparing the ACO, the SRT, and the ANN 
methods, the best result was obtained by the ACO and 
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Angstrom model (ACO & Model 1) with an average 
R2=0.974, and an average RMSE=0.001, and the worst 
result was for the SRT and the Abdallah model with an 
average R2=0.872, and an average RMSE=0.104. 

TABLE 3. Sample estimated values of  OH

H

 and  OS

S

for both 
data types on Tabriz station 

Data series Months 

OH

H 

OS

S 

Installation 1 0.419 0.523 

Installation 11 0.493 0.212 

Installation 21 0.655 0.735 
Installation 31 0.873 0.820 

Installation 41 0.700 0.791 

Installation 51 0.670 0.813 

Installation 61 0.715 0.895 

Installation 71 0.403 0.319 

Installation 81 0.512 0.600 

Installation 91 0.697 0.732 

Installation 101 0.478 0.600 

Installation 111 0.581 0.591 

Validation 121 0.400 0.400 

Validation 131 0.493 0.641 

Validation 141 0.448 0.823 

Validation 151 0.500 0.615 

 Although the results of ANN was worse than the 
results of the ACO & Model 1, but was better than the 

other three combined ACO & Models 2, 3, and 4 
methods, respectively.  

TABLE 4. Parameters used for the ACO algorithm 

Pheromone constant 2×10-4

Evaporation factor 0.75 
Allowable edge probability 0.05 

Total ants 40 
Iteration 500 

TABLE 5. Obtained empirical coefficients using the ACO 

 
Station name 

 
Empirical 

model 

 
a, b, c, and d 

 
 

Esfahan 

Model 1 0.37, 0.34 

Model 2 0.07, 0.51, 0.23, 0.14 

Model 3 0.52, -0.02, 0.18 

Model 4 0.68, 0.70 

 
 

Hamadan 

Model 1 0.35, 0.29 

Model 2 0.22, 0.16, 0.36, 0.79 

Model 3 0.20, -0.03, 0.33 

Model 4 0.93, 0.91 

 
 

Orumieh 

Model 1 0.37, 0.41 

Model 2 0.12, -0.26, 0.54, 0.34 

Model 3 0.61, 0.12, 0.29 

Model 4 0.49, -0.09 

 
 

Tabriz 

Model 1 0.56, 0.68 

Model 2 0.28, 0.34, 0.41, 0.10 

Model 3 0.17, 0.84, 0.11 

Model 4 0.55, 0.14 

TABLE 6. Accuracy evaluation of the results through R2 and RMSE indicators 

Station name Method/Approach R2 RMSE 

 

Esfahan 

ACO & Model 1, 2, 3, and 4 0.9961,0.9735,0.9489,0.9379 0.0012, 0.0014, 0.0134, 0.0168 

SRTs & Model 1, 2, 3, and 4 0.9913,0.8635,0.8726,0.9278 0.0135, s0.1046, 0.1012, 0.0481 

ANN 0.9377 0.0108 

 

Hamadan 

ACO & Model 1, 2, 3, and 4 0.9715,0.9681,0.9311,0.9332 0.0013,0.0096, 0.0045, 0.0191 

SRTs & Model 1, 2, 3, and 4 0.9147,0.8817,0.8915,0.9167 0.0715,0.0376,0.0358,0.0169 

ANN 0.9815 0.0012 

 

Orumieh 

ACO & Model 1, 2, 3, and 4 0.9667,0.9259,0.9318,0.9301 0.0017,0.0153,0.0185,0.0196 

SRTs & Model 1, 2, 3, and 4 0.9312,0.8387,0.9170,0.9235 0.0173,0.2610,0.0151,0.0287 

ANN 0.9461 0.0179 

 

Tabriz 

ACO & Model 1, 2, 3, and 4 0.9644,0.9482,0.9623,0.9620 0.0013,0.0049,.0.0160,0.0172 

SRTs & Model 1, 2, 3, and 4 0.8953,0.9055,0.9147,0.8939 0.0734,0.0167,0.0223,0.1001 

ANN 0.9716 0.0016 

 The combination results of linear empirical models 
and ACO had greater average R2 than combination of 
nonlinear empirical models with ACO, while this 
conclusion is inversely for the obtained average RMSE 

values. It is seen that the performance of the ACO 

algorithm changes when it is combined to different 
empirical models. Accordingly, estimation of the solar 
irradiance using the the linear empirical equations are 
more appropriate  than combination of ACO and 
nonlinear empirical equations in all sample regions.. 
The results have been developed and the coefficients of 
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the proposed ACO & model 1 have been calculated for 
all capital cities of provinces of Iran (except four sample 
cities for which results are presented in Table 5). 
The obtained coefficients are presented in Table 7. 
Appendix A. 
 The average performance of the ANN with R2=0.959, 
and the RMSE=0.007 was  better  than the SRTs, and 
very close to the ACO & Model 2 results with an 
R2=0.953, and the RMSE=0.007, while the ACO 
training process is not as complex as the ANN. 
Therefore, the ACO algorithm outperforms the artificial 
neural network. 

 
Figure 5. Comparison between average R2

 and average RMSE 
for nine testing methods 

6. CONCLUSION 

This paper presents a novel approach for estimating the 
monthly average of daily global solar irradiance on a 
horizontal surface. This method takes advantages of the 
linear and nonlinear empirical equations and ant colony 
optimization algorithm. For performance evaluation, the 
proposed algorithm was implemented and tested on 
different climate stations in Iran using two linear and 
two nonlinear empirical equations. The objective was to 
optimize the empirical coefficients for the GSI 
estimation using installation and validation data series 
obtained from meteorological department of Iran. The 
results of the proposed method were compared to the 
statistical regression and artificial neural network in 
terms of maximization of the coefficient of 
determination (R2) and minimization of the root mean 
square error (RMSE). The R2 values of the proposed 

ACO approach were greater than 0.96 and the RMSE 
values were smaller than 0.0018 in all sample stations. 
The best result was reported for Esfahan and the worst 
results were reported for Orumieh stations. The 
performance of artificial neural network was better than 
the statistical regression techniques and was very close 
to the ACO algorithm. However, the main drawbacks of 
the conventional neural networks compared to ACO 
algorithm are high training time, the need for large 
number of data during training process, unknown 
defined structure, the relatively large number of rquired 
hidden nodes, and possibility of getting trapped to local 

minima. Therefore, the proposed ACO approach has 
high simplicity and accuracy for the estimation of the 
GSI compared to its counterparts. 

TABLE 7. The obtained coefficients (using combination of 
ACO & Angstrom Model) for 29 capital cities of provinces of 
Iran  
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