Advanced Energy Technologies
Sadegh Safari; Hassan Ali Ozgoli
Abstract
In this paper, an electrochemical model was developed to investigate the performance analysis of a Solid Oxide Fuel Cell (SOFC). The curves of voltage, power, efficiency, and the generated heat of cell have been analyzed to accomplish a set of optimal operating conditions. Further, a sensitivity analysis ...
Read More
In this paper, an electrochemical model was developed to investigate the performance analysis of a Solid Oxide Fuel Cell (SOFC). The curves of voltage, power, efficiency, and the generated heat of cell have been analyzed to accomplish a set of optimal operating conditions. Further, a sensitivity analysis of major parameters that have a remarkable impact on the economy of the SOFC and its residential applications has been conducted. The results illustrate that the current density and cell performance temperature have vital effects on the system efficiency, output power and heat generation of cell of the SOFC. The best system efficiency is approached up to 53.34 % while implementing combined heat and power generation might be further improved up to 86 %. The economic evaluation results indicate that parameters such as overall efficiency, natural gas price and additional produced electricity that has prone to be sold to the national power grid, have a significant impact on the SOFC economy. The results indicate the strong reduction in the purchasing cost of the SOFC, i.e. not more than $2500, and improving the electrical efficiency of SOFC, i.e. not less than 42 %, can be the breakeven points of investment on such systems in residential applications. Also, it is found that the target of this SOFC cogeneration system for residential applications in Iran is relying on considerable technological enhancement of the SOFC, as well as life cycle improvement; improvement in governmental policies; and profound development in infrastructures to mitigate legal constraints.
Advanced Energy Technologies
Hassan Ali Ozgoli
Abstract
Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced ...
Read More
Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasification has been explained and shown able to supply the required fuel to the energy generators to compensate for the consumption consequences of fossil fuels. In this system, a molten carbonate fuel cell generates electricity from syngas produced by biomass gasification. In addition, a gas cleaning process prepares adequate treatment before consumption in the fuel cell. Furthermore, for the justification of this system as a combined heat and power (CHP) cycle, a considerable amount of produced heat in the proposed process generates power in GT and ST bottoming cycles. Due to the energy targeting, modeling and simulation of the presented system were fulfilled by the Cycle-Tempo software, and the results showed about 42 MW output power and total efficiency of around 83 %. Further to that, parametric studies represented the durability of the generated power against ambient temperature variations. Finally, changes in total power and efficiency due to the fluctuation of the moisture content of biomass, pressure ratio, and inlet temperature of GT have also been demonstrated.
Hossein Ghadamian; Hassan Ali Ozgoli; Mojtaba Baghban Yousefkhani; Foad Farhani
Abstract
Regenerative Fuel Cell (RFC) systems are used for the enhancement of sustainable energy aspect in conventional fuel cells. In this study, a photovoltaic-electrolyzer-fuel cell integrated cycle has been presented. The proposed system has been designed as a novel approach for alleviating the ...
Read More
Regenerative Fuel Cell (RFC) systems are used for the enhancement of sustainable energy aspect in conventional fuel cells. In this study, a photovoltaic-electrolyzer-fuel cell integrated cycle has been presented. The proposed system has been designed as a novel approach for alleviating the restrictions on energy streams in the RFC systems. Modeling of the system has been performed from the mass and energy point of view, based on both theoretical and practical procedures. To generate electricity from hydrogen, a proton exchange membrane fuel cell, integrated with an electrolyzer system which works by solar energy, has been used. Optimized results of required photovoltaic area have shown significantdifferences between theoretical and practical approaches. Moreover, all efficiencies of two scenarios including total efficiency have been indicated and analyzed. The main advantage of this system in comparison with single solar systems, is generation of internal energy of about 2.3 kW for producing 1 kW electricity by the fuel cell.