Advanced Energy Technologies
Ghazanfar Shahgholian
Abstract
Renewable energy provides twenty percent of electricity generation worldwide. Hydroelectric power is the cheapest way to generate electricity today. It is a renewable source of energy and provides almost one-fifth of electricity in the world. Also, it generates electricity using a renewable natural resource ...
Read More
Renewable energy provides twenty percent of electricity generation worldwide. Hydroelectric power is the cheapest way to generate electricity today. It is a renewable source of energy and provides almost one-fifth of electricity in the world. Also, it generates electricity using a renewable natural resource and accounting for six percent of worldwide energy supply or about fifteen percent of the world’s electricity. Hydropower is produced in more than 150 countries. Hydropower plant producers provide energy due to moving or falling water. This paper presents and discusses studies on hydroelectric power plant fields, which have been carried out by different investigators. This work aims to study and provide an overview of hydroelectric power plants such as applications, control, operation, modeling and environmental impacts. Also, the hybrid power and efficiency of the hydroelectric power plants has been investigated. The applications of a flexible AC transmission system (FACTS) controller in the power system with the hydroelectric power plants are presented.
Advanced Energy Technologies
Nima Amani
Abstract
The objective of this study is to evaluate the energy efficiency of residential buildings by using natural energy and optimizing the choice of materials for heat and cold saving with the Ecotect simulation software. According to analysis and simulation was found that the optimum material of main building ...
Read More
The objective of this study is to evaluate the energy efficiency of residential buildings by using natural energy and optimizing the choice of materials for heat and cold saving with the Ecotect simulation software. According to analysis and simulation was found that the optimum material of main building components in a mild climate zone of Rasht city is the Brick Conc block Plaster for wall with total radiation incident of 340 W/m2 and radiation absorption of 240 W/m2; Double Glazed-Low E for window with total radiation incident 340 W/m2 and radiation absorption of 100 W/m2; Foam Core Ply Wood for door with total radiation incident of 340 W/m2 and radiation absorption of 200 W/m2; ConcSlab- OnGround for floor with total radiation incident of 340 W/m2 and radiation absorption of 220 W/m2; and Conc Roof Asphalt for roof with total radiation incident of 340 W/m2 and radiation absorption of 300 W/m2. According to the hourly temperature analysis for all storeys of the building in the two hot and cold days of the year, it is determined by the design and material selection requirements that the building will be in the near thermal comfort zone (below 30 degrees) in the warm season.
Advanced Energy Technologies
Azin Hasanvand; Mehdi Pourabdoli; Ahmad Ghaderi Hamidi
Abstract
The effect of Al2O3 (1-10 wt %) and Y2O3 (1-10 wt %) additions on thermochemical heat storage properties of Co3O4/CoO system was investigated by thermogravimetry, XRD, and SEM analyses. Results showed that the addition of Al2O3 to Co3O4 at constant 8 h mechanical activation improved the redox cycle stability ...
Read More
The effect of Al2O3 (1-10 wt %) and Y2O3 (1-10 wt %) additions on thermochemical heat storage properties of Co3O4/CoO system was investigated by thermogravimetry, XRD, and SEM analyses. Results showed that the addition of Al2O3 to Co3O4 at constant 8 h mechanical activation improved the redox cycle stability and increased oxygen sorption value and rate. It was found that oxygen sorption and their rate decreased with increasing the alumina content to more than 8 wt %. The formation of the spinel phase and an increase in its amount by increasing the alumina content led to a decrease in the oxygen sorption capacity. SEM studies showed that Al2O3 prevented the sintering and particle growth of cobalt oxide particles during reduction and re-oxidation processes. In addition, results showed that the addition of Y2O3 in all ranges to Co3O4 improved the redox cycle stability of cobalt oxide; however, it significantly decreased the oxygen sorption in the Co3O4/CoO system. XRD patterns of a sample containing 10 wt % yttria before the redox process indicated the presence of only Co3O4 phase; however, after three redox cycles, other phases including CoO and Y2O3 appeared.
Advanced Energy Technologies
Mohammad Sajjad Rostami; Morteza Khashehchi; Payam Zarafshan; Mohammad Hossein Kianmehr; Ehsan Pipelzadeh
Abstract
Capacitive deionization (CDI) is an emerging energy efficient, low-pressure and low-cost intensive desalination process that has recently attracted experts’ attention. The process is to explain that ions (cations and anions) can be separated by a pure electrostatic force imposed by a small bias ...
Read More
Capacitive deionization (CDI) is an emerging energy efficient, low-pressure and low-cost intensive desalination process that has recently attracted experts’ attention. The process is to explain that ions (cations and anions) can be separated by a pure electrostatic force imposed by a small bias potential. Even at a rather low voltage of 1.2 V, desalinated water can be produced. The process can be well operational by a professional cell design. Although various processes have been manufactured before, in this study, membrane was removed and a new unit was designed and manufactured (Using CFD Simulation). In this case, the combination of activated carbon powder (with an effective surface area of 2600 m2 per gram), carbon black, and polyvinyl alcohol with a ratio of 35/35/30 coated on carbon paper as electrode materials was considered for tests. The weight was 1.41 grams for each material, and the thickness was 0.44 mm. CDI system was tested, and the results of charge-discharge cycles, cyclic voltammetry, and impedance spectroscopy were evaluated. It can be implied that there is no need for a strong pump and, also, pressure drop can be reduced due to such a noticeable space between two electrodes. Preliminary experimental results showed high specific capacitance (2.1 Farad) and ultra-high salt adsorption capacity, compared with similar cases.
Advanced Energy Technologies
Mohammad Zarei-Jelyani; Shaghayegh Baktashian; Mohsen Babaiee; Rahim Eqra
Abstract
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. ...
Read More
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper current collector, three binders such as PVDF, MSBR, and CMC+SBR were used to prepare the anode electrodes. The mechanical and electrochemical tests were conducted for different MCMB electrodes. The results show that the water-based binders (CMC+SBR and MSBR) made better adhesion properties for the coating on the current collector in comparison with the organic solvent-based binder (PVDF). MCMB anode fabricated with CMC+SBR binder shows the highest discharge capacity and the best rate performance at various C-rates of 0.2C, 0.5C, and 1C that result in the brilliant electrochemical performance. Therefore, artificial graphite anode materials using cheap aqueous CMC+SBR binder instead of toxic solvent like NMP and expensive PVDF improve electrochemical property and reduce the cost of LIBs.
Advanced Energy Technologies
Mohammad Jafari; Hossein Ghadamian; Leila Seidabadi
Abstract
The study of the battery charge process as the only power storage agent in off-grid systems is of significant importance. The battery charge process has different modes, and the battery in these modes is dependent on the amount of charge. In order to charge the battery in off-grid systems, two charge ...
Read More
The study of the battery charge process as the only power storage agent in off-grid systems is of significant importance. The battery charge process has different modes, and the battery in these modes is dependent on the amount of charge. In order to charge the battery in off-grid systems, two charge controllers including Pulse Width Modulation (PWM) and Maximum Power Point Tracker (MPPT) are commonly used. The charge rate (C-Rate) is different in these two models. Therefore, it is necessary to study the state of charge (SoC) in the PWM and MPPT models considerably. In this study, by using these two charge controller models, C-Rate is examined on portable and power plant scales. This research indicates that the PWM charge controller has better performance on the power plant scale than on the portable scale. The charging quality of the MPPT model is about 31 % and 7 % on portable and power plant scales, respectively, proved to be higher than that of the PWM charge controller. The PV panel performance has increased by 2 %-5 % through the application of the MPPT charge controller, compared with the PWM model. As the overall achievement of the experiment, according to the limitations of the MPPT charge controller, the PWM charge controller can be proposed on power plant scales, whereas the application of the MPPT model is appropriate for specific purposes.