Thermogravimetric and Kinetic Study of Pyrolysis of Corn Cob Biomass

Document Type: Research Article


1 Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai-600 025, India

2 Department of Chemical Engineering, Central Leather Research Institute, Chennai, India.


Agricultural residues are potential renewable biomass sources for bio-energy production. The objective of the work is to determine the pyrolysis kinetic parameters of corn cob biomass. Three different heating rates of 10, 20, and 30 °C/min were taken into account in the thermogravimetric analysis. The Kissinger, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunose (KAS) model-free methods were employed to calculate the kinetic parameters by the use of the data obtained from TGA. The thermal decomposition process shows three basic phases of pyrolysis: removal of moisture content, primary and secondary pyrolysis. The experimental values were compared with the obtained values from FWO and KAS models; implying that the model values were in good agreement with experimental results. The values of kinetic parameters obtained from Kissinger, FWO, and KAS methods are very similar to their average values of 115, 136, and 131 kJmol-1, respectively. Gas Chromatograph-Mass Spectroscopy (GC-MS) analysis of pyrolysis products is obtained, showing that bio-char and bio-oil contain 10 and 15 different compounds, respectively.


Main Subjects

1.     Mustafa, B. and Günhan, A., "Biomass energy in the world, Use of biomass and potential trends", Energy Sources, Vol. 27, (2005), 931-940. (

2.     Navarro, M.V., López, J.M., Veses, A., Callén, M.S. and García, T., "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model", Energy, Vol. 165, (2018), 731-742. (

3.     McKendry, P., "Energy production from biomass (Part 2): Conversion technologies", Bioresource Technology, Vol. 83, (2002), 47-54. (

4.     Zhai, M., Li, G., Zhang, Y., Dong, P., Qi, G. and Huang, Y., "Kinetic parameters of biomass pyrolysis by TGA", Bio Resources, Vol. 4, (2016), 8548-8557. (

5.     Patel, V.R., Patel, R.N. and Rao, V.J., "Kinetic parameter estimation of lignite by thermo-gravimetric analysis", Procedia Engineering, Vol. 51, (2013), 727-734. (

6.     Nithitorn, K., Witchaya, P. and Suthum, P., "Thermogravimetric kinetic analysis of the pyrolysis of rice straw", Energy Procedia, Vol. 79, (2015), 663-670. (

7.     Aiman, S. and Stubington, J.F., "The pyrolysis kinetics of bagasse at low heating rates", Biomass and Bioenergy, Vol. 5, (1993), 113-120. (

8.     Cortes, A.M. and Bridgwater, A.V., "Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis", Fuel Processing Technology,Vol. 138, (2015), 184-193. (

9.     Amutio, M., Lopez, G., Alvarez, J., Moreira, R., Duarte, G., Nunes, J., Olazar, M. and Bilbao, J., "Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region", Chemical Engineering Research and Design, Vol. 9, (2013), 2682-2690. (

10.   Alwani, M.S., Abdul Khalil, H.P.S., Sulaiman, O., Islam, M.N. and Dungani, R., "An approach to using agricultural waste fibres in bio composites application: Thermogravimetric analysis and activation energy", Bio Resources, Vol. 9, (2014), 218-230. (

11.   Bojan, J., "Thermal stability investigation and the kinetic study of Folnak degradation process under non-isothermal conditions", American Association of Pharmaceutical Scientist,Vol. 11, (2010), 103-112. (

12.   Haykiri-Acma, H.,Yaman, S. and Kucukbayrak, S., "Effect of heating rate on the pyrolysis yields of rapeseed", Renewable Energy, Vol. 31, (2006), 803-810. (

13.   Islam, M.A., Auta, M., Kabir, G. and Hameed, B.H., "A thermogravimetric analysis of the combustion kinetics of karanja (Pongamiapinnata) fruit hulls char", Bioresource Technology, Vol. 200, (2016), 335-341. (

14.   Mishra, G., Kumar, J. and Bhaskar, T., "Kinetic studies on the pyrolysis of pinewood", Bioresource Technology, Vol. 182, (2015), 282-288. (

15.   Damartzis, Th., Vamvuka, D., Sfakiotakis, S. and Zabaniotou, A., "Thermal degradation studies and kinetic modeling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA)", Bioresource Technology, Vol. 102, (2011), 6230-6238. (

16.   Slopiecka, K., Bartocci, P. and Fantozzi, F., "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis", Journal of Applied Energy, Vol. 97, (2012), 491-497. (

17.   Prakash, P., Sheeba Narayanan, K. and Arockiam, L., "Study on kinetic parameters of different biomass samples using thermogravimetric analysis", Biomass and Bioenergy,Vol. 58, (2013), 58-66. (

18.   Alvarez, A., Pizarro, C., Garcia, R., Bueno, J.L. and Lavin A.G., "Determination of kinetic parameters for biomass combustion", Bioresource Technology, Vol. 216, (2008), 36-43. (

19.   Kumar, A., Wang, L., Dzenis, Y.A., Jones, D.D. and Hanna, M.A., "Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock", Biomass and Bioenergy, Vol. 32, (2008), 460-467. (

20.   Prakash, P. and Sheeba Narayanan, K., "Determination of kinetic parameters of biomass samples using thermogravimetric analysis", Environmental Progress & Sustainable Energy, Vol. 33, (2013), 256-266. (

21.   El-Sayed, S.A. and Mustafa, M.E., "Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques", Waste Biomass Valor, Vol. 6, (2015), 401-415. ( 10.1007/s12649-015-9354-7).

22.   Mansaray, K.G. and Ghaly, A.E., "Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis", Biomass and Bioenergy, Vol. 21, (1999), 899-911. (

23.   Heydari, M., Rahman, M. and Gupta, R., "Kinetic study and thermal decomposition behavior of lignite coal", International Journal of Chemical Engineering,Vol. 2015, (2015), 1-9. (