Evaporation Characteristics of Diesel and Biodiesel Fuel Droplets on Hot Surfaces

Document Type: Research Article


1 Department of Biosystems Engineering, Tarbiat Modares University (TMU), Tehran, Iran.

2 Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran.


In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researchers. The aim of this study is to investigate the evaporation characteristics based on droplet lifetime and critical surface temperature (the maximum heat transfer rate) of diesel and biodiesel fuel droplets on hot surfaces. In order to determine the effects of diesel fuel, canola oil biodiesel, and castor oil biodiesel, the droplets impinging on the hot surfaces of aluminum alloy (7075) and steel alloy (1.5920) and the evaporation lifetime of diesel and biodiesel fuels were measured. Statistical analysis (ANOVA and Duncan’s multiple-range test) was carried out using SAS software. The results showed the maximum critical surface temperature of 450 °C for the castor oil biodiesel on steel 1.5920 surface and the minimum one for diesel fuel (350 °C). In this case, both surfaces had the same droplet lifetimes of approximately 2 s. The results of ANOVA showed the significant effect of the surface material and fuel type on the evaporation lifetime of fuel droplet at 1 % probability.


Main Subjects

1.     Diesel, R., The diesel oil engine, (1897). (https://doi.org/10.1111/j.1559-3584.1912.tb03562.x).

2.     Ma, F. and Hanna, M.A., "Biodiesel production: A review", Bioresource Technology, Vol. 70, No. 1, (1999), 1-15. (doi:10.1016/S0960-8524(99)00025-5).

3.     Abbaszaadeh, A., Ghobadian, B., Omidkhah, M.R. and Najafi, G., "Current biodiesel production technologies : A comparative review", Energy Conversion Management, Vol. 63, (2012), 138-148. (doi:10.1016/j.enconman.2012.02.027).

4.     Knothe, G., Krahl, J. and Van Gerpen, J., editors, 4-Biodiesel Production, Biodiesel Handbook (Second ed.), AOCS Press, (2010), 31-96. (https://doi.org/10.1016/B978-1-893997-62-2.50009-7).

5.     Schwab, A.W., Bagby, M.O. and Freedman, B., "Preparation and properties of diesel fuels from vegetable oils", Fuel, Vol. 66, (1987), 1372-1378. (doi:https://doi.org/10.1016/0016-2361(87)90184-0).

6.     Fayyazi, E., Ghobadian, B., Mousavi, S.M. and Najafi, G., "Intensification of continues biodiesel production process using a simultaneous mixer-separator reactor", Energy Sources, Part A: Recover Utilization and Environmental Effects, (2018), 1125-1136. (https://doi.org/10.1080/15567036.2018.1474293).

7.     Mizomoto, M., Hayano, H. and Ikai, S., "Evaporation and ignition of a fuel droplet on a hot surface : Part 1, Evaporation", Bulletin of JSME, Vol. 21, (1978), 1765-1771. (doi:10.1299/jsme1958.21.1765).

8.     Abu-Zaid, M., "An experimental study of the evaporation of gasoline and diesel droplets on hot surfaces", International Communications in Heat and Mass Transfer, Vol. 21, (1994), 315-322. (doi:10.1016/0735-1933(94)90029-9).

9.     Fardad, D. and Ladommatos, N., "Evaporation of hydrocarbon compounds, including gasoline and diesel fuel, on heated metal surfaces", Proceedings of The Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, Vol. 213, (1999), 625-445. (doi:10.1243/0954407991527152).

10.   Arifin, Y.M. and Arai, M., "Deposition characteristics of diesel and bio-diesel fuels", Fuel, Vol. 88, (2009), 2163-2170. (doi:10.1016/j.fuel.2009.01.021).

11.   Arifin, Y.M., Furuhata, T., Saito, M. and Arai, M., "Diesel and bio-diesel fuel deposits on a hot surface", Fuel, Vol. 87, (2008), 1601-1609. (doi:10.1016/j.fuel.2007.07.030).

12.   Metcalfe, L.D. and Schmitz, A.A., "The rapid preparation of fatty acid esters for gas chromatographic analysis", Analytical Chemistry, Vol. 33, (1961), 363-364. (doi:10.1021/ac60171a016).

13.   Moosavi, S.A., Aghaalikhani, M., Ghobadian, B. and Fayyazi, E., "Okra : A potential future bioenergy crop in Iran", Renewable and Sustainable Energy Reviews, Vol. 93, (2018), 517-524. (doi:10.1016/j.rser.2018.04.057).

14.   Xiong, T.Y. and Yuen, M.C., "Evaporation of a liquid droplet on a hot plate", International Journal of Heat and Mass Transfer, Vol. 34, (1991), 1881-1894. (doi:10.1016/0017-9310(91)90162-8).

15.   Tamura, Z. and Tanasawa, Y., "Evaporation and combustion of a drop contacting with a hot surface", Symposium on Combustion, Vol. 7, No. 1, (1958), 509-522. (doi:10.1016/S0082-0784(58)80086-7).

16.   Arifin, Y.M. and Arai, M., "The effect of hot surface temperature on diesel fuel deposit formation", Fuel, Vol. 89, (2010), 934-942. (doi:10.1016/j.fuel.2009.07.014).

17.   Abu-Zaid, M., "An experimental study of the evaporation characteristics of emulsified liquid droplets", Heat  and Mass Transfer, Vol. 40, (2004), 737-741. (doi: 10.1007/s00231-003-0473-5).