Energy Modeling and Techno-Economic Analysis of a Biomass Gasification-CHAT-ST Power Cycle for Sustainable Approaches in Modern Electricity Grids

Document Type: Research Article


1 Department of Energy Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mechanical Engineering, Tafresh University, Tafresh, Iran.

3 Department of Mechanical Engineering, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.


In this study, an advanced combined power generation cycle was evaluated to obtain sustainable energy with high power and efficiency. This combined cycle includes biomass gasification, the Cascaded Humidified Advanced Turbine (CHAT), and the steam turbine. The fuel consumed by the system is derived from the gas produced in the biomass gasification process. The biomass consumed in this study is wood because of its reasonable supply and availability. The economic analysis conducted in the present research has produced significant gains. The proposed cycle with current prices intended to sell electricity in Iran has a positive Net Present Value (NPV). Therefore, the presented cycle in terms of energy supply has good economic value. Due to the significantly higher purchase/sale price of electricity from renewable power plants in developed countries in Europe or the United States, the power generation cycle proposed in this study may be more economically feasible in other regions than Iran. Of course, with a slight price increase in electricity sales in Iran (3 US₵ kWh-1), the proposed system will have acceptable NPV. Because of the complicated equipment used in high-pressure and low-pressure turbines and compressors sets, the equipment used in this cycle requires a higher initial investment cost than conventional power generation systems. The results showed that the investment cost per unit of energy was approximately 909 USD kW-1.


Main Subjects

1.     "International energy outlook 2019 with projections to 2050", U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy, Washington, D.C., (2020).

2.     Moghadasi, M., Ghadamian, H., Farzaneh, H., Moghadasi M. and Ozgoli, H.A., "CO2 capture technical analysis for gas turbine flue gases with complementary cycle assistance including non linear mathematical modeling", Procedia Environmental Sciences, Vol. 17, (2013), 648-657. (DOI: 10.1016/j.proenv.2013.02.081).

3.     Akia, M., Yazdani, F., Motaee, E., Han, D. and Arandiyan, H., "A review on conversion of biomass to biofuel by nanocatalysts", Biofuel Research Journal, Vol. 1, (2014), 16-25. (DOI: 10.18331/ BRJ2015.1.1.5).

4.     Din, Z.U. and Zainal, Z.A., "Biomass integrated gasification-SOFC systems: Technology overview", Renewable & Sustainable Energy Reviews, Vol. 53, (2016), 1356-1376. (DOI: 10.1016/j.rser.2015. 09.013).

5.     Gottumukkala, L.D., Haigh, K., Collard, F.X., van Rensburg, E. and Görgens, J., "Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge", Bioresource Technology, Vol. 215, (2016), 37-49. (DOI: 10.1016/j.biortech.2016.04.015).

6.     Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S. and Mekhilef, S., "A review on biomass as a fuel for boilers", Renewable & Sustainable Energy Reviews, Vol. 15, (2011), 2262-2289. (DOI: 10.1016/j.rser.2011.02.015).

7.     Bauen, A., Berndes, G., Junginger, M., Londo, M., Vuille, F., Ball, R., Bole, T., Chudziak, C., Faaij, A. and Mozaffarian, H., Bioenergy: A sustainable and reliable energy source, A review of status and prospects, IEA Bioenergy, USA, (2009).

8.     Razak, A.M.Y., Industrial gas turbines performance and operability, Woodhead Publishing Ltd., Oxford, UK, (2007).

9.     Ghadamian, H., Hamidi, A.A., Farzaneh, H. and Ozgoli, H.A., "Thermo-economic analysis of absorption air cooling system for pressurized solid oxide fuel cell/gas turbine cycle", Journal of Renewable and Sustainable Energy, Vol. 4, (2012) 1-14. (DOI: 10.1063/1.4742336).

10.   Hrbek, J., Thermal gasification based hybrid systems, IEA Bioenergy Task 33 special project, Vienna University of Technology, Austria, (2015).

11.   Bocci, E., Sisinni, M., Moneti, M., Vecchione, L., Di Carlo, A. and Villarini, M., "State of art of small biomass gasification power systems: A review of the different typologies", 68th Conference of the Italian Thermal Machines Engineering Association (ATI2013), Energy Procedia, Vol. 45, (2014), 247-256. (DOI: 10.1016/ j.egypro.2014.01.027).

12.   Omar, A., Saghafifar, M. and Gadalla, M., "Thermo-economic analysis of air saturator integration in conventional combined power cycles", Applied Thermal Engineering, Vol. 107, (2016), 1104-1122. (DOI: 10.1016/j.applthermaleng.2016.06.181).

13.   Ghavami Gargari, S., Rahimi, M. and Ghaebi, H., "Energy, exergy, economic and environmental analysis and optimization of a novel biogas-based multigeneration system based on Gas Turbine-Modular Helium Reactor cycle", Energy Conversion and Management, Vol. 185, (2019), 816-835. (DOI: 10.1016/j.enconman.2019.02.029).

14.   Dibyendu, R., Samiran, S. and Sudip, G., "Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle", Journal of Cleaner Production, Vol. 225, (2019), 36-57. (DOI: 10.1016/j.jclepro.2019.03.261).

15.   Li, J., Mohammadi, A. and Maleki, A., "Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle, and parabolic trough collector", Journal of Thermal Analysis and Calorimetry, (2019). (DOI: 10.1007/s10973-019-08855-9).

16.   Basu, P., Biomass gasification and pyrolysis: Practical design and theory, Academic Press, (2010). (DOI: 10.1016/C2009-0-20099-7).

17.   Ruiz, J.A., Juárez, M.C., Morales, M.P., Muñoz, P. and Mendívil, M.A., "Biomass gasification for electricity generation: Review of current technology barriers", Renewable & Sustainable Energy Reviews, Vol. 18, (2013), 174-183. (DOI: 10.1016/j.rser.2012.10.021).

18.   Parthasarathy, P. and Narayanan, K.S., "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-a review", Renewable Energy, Vol. 66, (2014), 570-579. (DOI: 10.1016/j.renene.2013.12.025).

19.   Molino, A., Chianese, S. and Musmarra, D., "Biomass gasification technology: The state of the art overview", Journal of Energy Chemistry, Vol. 25, (2016), 10-25. (DOI: 10.1016/j.jechem. 2015.11.005).

20.   Heidenreich, S. and Foscolo, P.U., "New concepts in biomass gasification", Progress in Energy and Combustion Science, Vol. 46, (2015), 72-95. (DOI: 10.1016/j.pecs.2014.06.002).

21.   Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, E. and Fennell, P., "An overview of advances in biomass gasification", Energy & Environmental Science, Vol. 9, (2016), 2939-2977. (DOI: 10.1039/C6EE00935B).

22.   Kirnbauer, F., Wilk, V., Kitzler, H., Kern, S. and Hofbauer, H., "The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier", Fuel, Vol. 95, (2012), 553-562. (DOI: 10.1016/j.fuel.2011.10.066).

23.   Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M. and Boccaccini, A.R., "Thermal plasma technology for the treatment of wastes: A critical review", Journal of Hazardous Materials, Vol. 161, (2009), 614-626. (DOI: 10.1016/j.jhazmat.2008.04.017).

24.   Udomsirichakorn, J., Basu, P., Salam, P.A. and Acharya, B., "Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier", International Journal of Hydrogen Energy, Vol. 38, (2013), 14495-14504. (DOI: 10.1016/j.ijhydene.2013.09.055).

25.   Ozgoli, H.A., Moghadasi, M., Farhani, F. and Sadigh, M., "Modeling and simulation of an integrated gasification SOFC–CHAT cycle to improve power and efficiency", Environmental Progress & Sustainable Energy, Vol. 36, (2017), 610-618. (DOI: 10.1002/ep.12487).

26    Hosseinpour, S., Mehdipour, R., Haji Seyed Mirzahosseini, A., Hemmasi, A.H. and Ozgoli, H.A., "Propose and analysis of an integrated biomass gasification-CHAT-ST cycle as an efficient green power plant", Environmental Progress & Sustainable Energy, Vol. 38, (2019), 13184. (DOI:10.1002/ep.13184).

27.   Goswami, D.Y., The CRC handbook of mechanical engineering, CRC Press, USA, (2004). (DOI: 10.1201/9781420041583).

28.   Nakhamkin, M., Swensen, E.C., Touchton, G., Cohn, A. and Polsky, M., "CHAT technology: An alternative approach to achieve advanced turbine systems efficiencies with present combustion turbine technology", Proceedings of International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, USA, (1997). (DOI: 10.1115/98-GT-143).

29.   Wolk, R., Nakhamkin, M. and Goldstein, H.N., "Evaluation of cascaded humidified advanced turbine (CHAT) cycles for natural gas and syngas", Proceedings of USDOE Turbine Power Systems Conference, Galveston, TX., USA, (2002).

30.   Nakhamkin, M., Swensen, E., Wilson, L.M., Gaul, G. and Polsky, M., "The cascaded humidified advanced turbine (CHAT)", Journal of Engineering for Gas Turbines and Power, Vol. 118, (1996), 565-571. (DOI: 10.1115/1.2816685).

31.   Wolk, R. and Nakhamkin, M., "12 Megawatt cascaded humidified advanced turbine (CHAT) plant general overview", Advanced Turbine Systems Annual Program Review Meeting, US Department of Energy, Washington, D.C., USA, (1999).

32.   Ozgoli, H.A. and Ghadamian, H., "Energy price analysis of a biomass gasification-solid oxide fuel cell-gas turbine power plant", Iranian Journal of Hydrogen & Fuel Cell, Vol. 3, (2016), 45-58.

33.   Ozgoli, H.A., Ghadamian, H. and Pazouki, M., "Economic analysis of biomass gasification-solid oxide fuel cell-gas turbine hybrid cycle", International Journal of Renewable Energy Research (IJRER), Vol. 7, (2017), 1007-1018.

34.   Ulrich, K.T., Product design and development, McGraw-Hill, USA, (2000).

35.   Garrett, D.E., Chemical engineering economics, Springer Netherlands, (1989). (DOI: 10.1007/978-94-011-6544-0).

36.   Seider, W.D., Lewin, D.R., Seader, J.D., Widagdo, S., Gani, R. and Ming Ng, K., Product and process design principles: Synthesis, analysis, and evaluation, Wiley, USA, (2016).

37.   Arsalis, A., "Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10MWe", Journal of Power Sources, Vol. 181, (2007), 313-326. (DOI: 10.1016/j.jpowsour.2007.11.104).

38.   Boehm, R.F., Design analysis of thermal systems, Wiley, USA, (1987).

39.   Caputo, A.C., Palumbo, M., Pelagagge, P.M. and Scacchia, F., "Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables", Biomass and Bioenergy, Vol. 28, (2005), 35-51. (DOI: 10.1016/j.biombioe. 2004.04.009).

40.   Toonssen, R., "Sustainable power from biomass: Comparison of technologies for centralized or de-centralized fuel cell systems", Ph. D. Thesis, Delft University of Technology, Netherlands; (2010).