A Novel Local Control Technique for Converter-Based Renewable Energy Resources in the Stand-Alone DC Micro-Grids

Document Type: Research Article

Authors

Department of Control, Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Abstract

This paper presents a novel local control method for the converter-based renewable energy resources in a stand-alone DC micro-grid based on energy analysis. The studied DC micro-grid comprises the renewable energy resources, back-up generation unit, and battery-based energy storage system, which are connected to the common DC-bus through the buck and bidirectional buck-boost converters. The proposed control method satisfies the stability of the micro-grid output variables, along with current control and voltage regulation by controlling the switching functions of the converters, regardless of the energy resource dynamics. The dynamic component of the switching function is extracted as a control signal using the state-feedback through a mathematical method. The control inputs are designed based on Lyapunov stability theorem to guarantee the stability of output variables (DC-bus voltage and generated currents) in a stand-alone DC micro-grid through an energy analysis. The proposed distributed controller can be easily generalized as a platform with all kinds of the stand-alone DC micro-grids comprising any type or number of distributed generations such as renewable energy resources, fossil-fuel-based generations, and energy storage units. Other features of this local control method are simplicity, celerity, comprehensiveness, and independence of the distributed generations. The dynamic performance assessment of the proposed controller is verified through a simulation in MATLAB/SIMULINKÒ environment. The results validate the accuracy and stability of the proposed control strategy in various operating conditions.

Keywords

Main Subjects


1.     Rezagholizadeh, M., Aghaei, M. and Dehghan, O., "Foreign direct investment, stock market development, and renewable energy consumption: Case study of Iran", Journal of Renewable Energy and Environment (JREE), Vol. 7, No. 2, (2020), 8-18.

2.     Carrasco, J.M., Franquelo, L., Bialasiewicz, J., Galvan, E., Portillo, R., Prats, M.M., Leon, J. and Moreno-Alfonso, N., "Power-electronic systems for the grid integration of renewable energy sources", Industrial Electronics, IEEE Transactions A: Survey, Vol. 53, (2006), 1002-1016. (DOI: 10.1109/TIE.2006.878356).

3.     Justo, J.J., Mwasilu, F., Lee, J. and Jung, J.W., "AC-micro-grids versus DC-micro-grids with distributed energy resources", Renewable and Sustainable Energy Reviews A: Review, Vol. 24, (2013), 387-405. (DOI: 10.1016/j.rser.2013.03.067).

4.     Elsayed, A.T., Mohamed, A.A. and Mohammed, O.A., "DC micro-grids and distribution systems", Electric Power Systems Research A: Overview, Vol. 119, (2015), 407-417. (DOI: 10.1016/j.epsr. 2014.10.017).

5.     Azizi, N. and Moradi CheshmehBeigi, H., "Reactive and active power control of grid WECS based on DFIG and energy storage system under both balanced and unbalanced grid conditions", Journal of Renewable Energy and Environment (JREE), Vol. 4, No. 4, (2017), 31-38.

6.     Rahmani, M., Faghihi, F., Moradi CheshmehBeigi, H. and Hosseini, S., "Frequency control of islanded microgrids based on fuzzy cooperative and influence of STATCOM on frequency of microgrids", Journal of Renewable Energy and Environment (JREE), Vol. 5, No. 4, (2019), 27-33.

7.     Joung, K.W., Kim, T. and Park, J.W., "Decoupled frequency and voltage control for stand-alone microgrid with high renewable penetration", IEEE Transactions on Industry Applications, Vol. 55, No. 1, (2018), 122-133. (DOI: 10.1109/tia.2018.2866262).

8.     Kim, J.Y., Jeon, J.H., Kim, S.K., Cho, C., Park, J.H., Kim, H.M. and Nam, K.Y., "Cooperative control strategy of energy storage system and micro sources for stabilizing the micro-grid during islanded operation", IEEE Transactions on Power Electronics, Vol. 25, No. 12, (2010), 3037-3048. (DOI: 10.1109/TPEL.2010.2073488).

9.     Dastgeer, F. and Gelani, H.E., "A comparative analysis of system efficiency for AC and DC residential power distribution paradigms", Energy and Buildings, Vol. 138, (2017), 648-654. (DOI: 10.1016/j.enbuild.2016.12.077).

10.   Xu, L. and Chen, D., "Control and operation of a DC micro-grid with variable generation and energy storage", IEEE Transactions on Power Delivery, Vol. 26, No. 4, (2011), 2513-2522. (DOI: 10.1109/TPWRD.2011.2158456).

11.   Fallah, S., Deo, R., Shojafar, M., Conti, M. and Shamshirband, S., "Computational intelligence approaches for energy load forecasting in smart energy management grids", State of the Art, Future Challenges, and Research Directions Energies, Vol. 11, No. 3, (2018), 596. (DOI: 10.3390/en11030596).

12.   Chen, D., Xu, L. and Yao, L., "DC voltage variation based autonomous control of DC micro-grids", IEEE Transactions on Power Delivery, Vol. 28, No. 2, (2013), 637-648. (DOI: 10.1109/TPWRD. 2013.2241083).

13.   Augustine, S., Mishra, M.K. and Lakshminarasamma, N., "Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage stand-alone DC micro-grid", IEEE Transactions on Sustainable Energy, Vol. 6, No. 1, (2015), 132-141. (DOI: 10.1109/TSTE.2014.2360628).

14.   Dizqah, A.M., Maheri, A., Busawon, K. and Kamjoo, A., "A multivariable optimal energy management strategy for stand-alone dc micro-grids", IEEE Transactions on Power Systems, Vol. 30, No. 5, (2015), 2278-2287. (DOI: 10.1109/TPWRS.2014.2360434).

15.   Anand, S., Fernandes, B.G. and Guerrero, J.M., "Distributed control to ensure proportional load sharing and improve voltage regulation in low voltage DC micro-grids", Fuel, Vol. 3, No. 4, (2013). (DOI: 10.1109/TPEL.2012.2215055).

16.   Kordkheili, H., Banejad, M., Kalat, A., Pouresmaeil, E. and Catalão, J., "Direct-lyapunov-based control scheme for voltage regulation in a three-phase islanded microgrid with renewable energy sources", Energies, Vol. 11, No. 5, (2018), 1161.‏ (DOI: 10.3390/en11051161).

17.   Tahim, A.P.N., Pagano, D.J., Lenz, E. and Stramosk, V., "Modeling and stability analysis of islanded DC microgrids under droop control", IEEE Transactions on Power Electronics, Vol. 30, No. 8, (2014), 4597-4607.‏ (DOI: 10.1109/TPEL.2014.2360171).

18.   Herrera, L., Zhang, W. and Wang, J., "Stability analysis and controller design of DC microgrids with constant power loads”, IEEE Transactions on Smart Grid, Vol. 8, No. 2, (2015), 881-888.‏ (DOI: 10.1109/TSG.2015.2457909).

19.   Liu, S., Zhu, W., Cheng, Y. and Xing, B., "Modeling and small-signal stability analysis of an islanded DC microgrid with dynamic loads", Proceedings of 15th International Conference on Environment and Electrical Engineering, (2015), 866-871. (DOI: 10.1109/EEEIC. 2015.7165277).

20.   Ghanbari, N., Bhattacharya, S. and Mobarrez, M., "Modeling and stability analysis of a dc microgrid employing distributed control algorithm", Proceedings of 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems, (2018),1-7. (DOI: 10.1109/PEDG.2018.8447707).

21.   Makrygiorgou, D. and Alexandridis, A., "Stability analysis of dc distribution systems with droop-based charge sharing on energy storage devices", Energies, Vol. 10, No. 4, (2017), 433.‏ (DOI: 10.3390/en10040433).

22.   Perez, F. and Damm, G., DC microgrids, In Microgrids design and implementation, (2019), 472-473. (DOI: 10.1007/978-3-319-98687-6_16).

23.   Fei, G.A.O., Ren, K.A.N.G., Jun, C.A.O. and Tao, Y.A.N.G., "Primary and secondary control in DC microgrids", Journal of Modern Power Systems and Clean Energy A: Review, Vol. 7, No. 2, (2019), 227-242. (DOI: 10.1007/s40565-018-0466-5).

24.   Sitbon, M., Aharon, I., Averbukh, M., Baimel, D. and Sassonker, M., "Disturbance observer based robust voltage control of photovoltaic generator interfaced by current mode buck converter", Energy Conversion and Management, Vol. 209, (2020). (DOI:10.1016/j.enconman.2020.112622).

25.   Amiri, H., Markadeh, G.A., Dehkordi, N.M. and Blaabjerg, F., "Fully decentralized robust backstepping voltage control of photovoltaic systems for DC islanded microgrids based on disturbance observer method", ISA Transactions, (2020). (DOI: 10.1016/j.isatra. 2020.02.006).

26    Kumar, J., Agarwal, A. and Agarwal, V., "A review on overall control of DC microgrids", Journal of Energy Storage, Vol. 21, (2019), 113-138. (DOI: 10.1016/j.est.2018.11.013).

27.   Mehdi, M., Jamali, S.Z., Khan, M.O., Baloch, S. and Kim, C.H., "Robust control of a DC microgrid under parametric uncertainty and disturbances", Electric Power Systems Research, Vol. 179, (2020). (DOI: 10.1016/j.epsr.2019.106074).

28.   Nahata, P., Soloperto, R., Tucci, M., Martinelli, A. and Ferrari-Trecate, G., "A passivity-based approach to voltage stabilization in DC microgrids with ZIP loads", Automatica, Vol. 113, (2020). (DOI: 10.1016/j.automatica.2019.108770).

29.   Tani, A., Camara, M.B. and Dakyo, B., "Energy management in the decentralized generation systems based on renewable energy-Ultracapacitors and battery to compensate the wind/load power fluctuations", IEEE Transactions on Industry Applications, Vol. 51, No. 2, (2015), 1817-1827. (DOI: 10.1109/TIA.2014.2354737).

30.   Kumar, M., Srivastava, S.C., Singh, S.N. and Ramamoorty, M., "Development of a new control strategy based on two revolving field theory for single-phase VCVSI integrated to DC micro-grid", International Journal of Electrical Power & Energy Systems, Vol. 98, (2018), 290-306. (DOI: 10.1016/j.ijepes.2017.11.042).

31.   Camara, M.B., Dakyo, B. and Gualous, H., "Polynomial control method of DC/DC converters for DC-bus voltage and currents management-Battery and supercapacitors", IEEE Transactions on Power Electronics, Vol. 27, No. 3, (2012), 1455-1467. (DOI: 10.1109/TPEL.2011.2164581).

32.   Gavagsaz-Ghoachani, R., Phattanasak, M., Martin, J.P., Nahid-Mobarakeh, B., Pierfederici, S. and Riedinger, P., "Observer and lyapunov-based control for switching power converters with LC input filter", IEEE Transactions on Power Electronics,Vol. 34, No, 7, (2019), 7053-7066. (DOI: 10.1109/tpel.2018.2877180).

33.   Muhammad, H.R., Power electronics handbook, Prentice Hall, (2001), 64-66.

34.   Slotine, J.J.E. and Li, W., Applied nonlinear control, Englewood Cliffs, NJ: Prentice Hall, (1991), 65-66

35.   Guda, S.R., Wang, C. and Nehrir, M.H., "Modeling of microturbine power generation systems", Electric Power Components and Systems, Vol. 34, No. 9, (2006), 1027-1041.‏ (DOI: 10.1080/15325000600596767).