Document Type: Research Article

Authors

1 Department of Environmental Engineering, School of Environment, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.

2 Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, P. O. Box: 14515-775, Tehran, Iran.

Abstract

Carbon-dioxide Capture and Utilization (CCU) technology is an efficient process in the portfolio of greenhouse gas reduction approaches and is programmed to mitigate global warming. Given that the prime intention of CCU technologies is to prevent CO2 emissions into the atmosphere, it remains to be seen if these approaches cause other environmental impacts and consequences. Therefore, the Life Cycle Assessment (LCA) approach was considered to account for all environmental aspects, in addition to the emission of greenhouse gases. In this study, the Life Cycle Inventory (LCI) methodology was employed to quantify the environmental impacts of indirect carbonation of Red Mud (RM), a waste byproduct of alumina production line in Jajarm Alumina Plant, Iran by CO2 exhausted from the plant stacks based on International Organization for Standardizations (ISO) of ISO 14040 and ISO 14044. The results confirmed the reduction of CO2 emission by 82 %. The study of carbon footprint based on ISO 14064 under the criterion of PAS 2050 revealed CO2 emission equivalent to 2.33 kg/ ton RM, proving that CCU managed to mitigate the CO2 emission by 93 % compared to the conventional technology employed in Jajarm Plant, which produced around 34 kg CO2 per 1 ton RM. Furthermore, the economic evaluation of the process brought about 243 $/ton RM in profit via the sales of products including silica, aluminum, hematite, and calcium carbonate. The outcomes of the present study highlight that the intended CCU technology is a practicable approach for large-scale applications.

Keywords

Main Subjects

1.     Jeon, J. and Kim, M.-J., "CO2 storage and CaCO3 production using seawater and an alkali industrial by-product", Chemical Engineering Journal, Vol. 378, (2019), 122180. (https://doi.org/10.1016/ j.cej.2019.122180).

2.     Brandão, M., Levasseur, A., Kirschbaum, M.U.F., Weidema, B.P., Cowie, A.L., Jørgensen, S.V., Hauschild, M.Z., Pennington, D.W. and Chomkhamsri, K., "Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting", The International Journal of Life Cycle Assessment, Vol. 18, (2013), 230-240. (https://doi.org/10.1007/s11367-012-0451-6).

3.     Koornneef, J., van Keulen, T., Faaij, A. and Turkenburg, W., "Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2", International Journal of Greenhouse Gas Control, Vol. 2, (2008), 448-467. (https://doi.org/10.1016/j.ijggc.2008.06.008).

4.     McDonagh, S., Wall, D.M., Deane, P. and Murphy, J.D., "The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation", Renewable Energy, Vol. 131, (2019), 364-371. (https://doi.org/10.1016/j.renene.2018.07.058).

5.     Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A. and Ziefle, M., "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany", Energy Policy, Vol. 125, (2019), 235-249. (https://doi.org/10.1016/j.enpol.2018.10.039).

6.     Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A. and Müller, T.E., "Worldwide innovations in the development of carbon capture technologies and the utilization of CO2", Energy and Environmental Science, Vol. 5, (2012), 7281-7305. (https://doi.org/10.1039/C2EE03403D).

7.     Laude, A., Ricci, O., Bureau, G., Royer-adnot, J. and Fabbri, A., "CO2 capture and storage from a bioethanol plant : Carbon and energy footprint and economic assessment", International Journal of Greenhouse Gas Control, Vol. 5, No. 5, (2011), 1220-1231. (https://doi.org/10.1016/j.ijggc.2011.06.004).

8.     Vreys, K., Lizin, S., Van Dael, M., Tharakan, J. and Malina, R., "Exploring the future of carbon capture and utilisation by combining an international Delphi study with local scenario development", Resources, Conservation and Recycling, Vol. 146, (2019), 484-501. (https://doi.org/10.1016/j.resconrec.2019.01.027)

9.    Harrison, B. and Falcone, G., "Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery", Acta Geotechnica, Vol. 9, (2014), 29-38. (https://link.springer.com/ article/10.1007%2Fs11440-013-0235-6). (https://doi.org/10.1007/s11440-013-0235-6)

10.   Perdan, S., Jones, C.R. and Azapagic, A., "Public awareness and acceptance of carbon capture and utilisation in the UK", Sustainable Production Consumption, Vol. 10, (2017), 74-84. (https://doi.org/10.1016/j.spc.2017.01.001).

11.   Bruhn, T., Naims, H. and Olfe-Kräutlein, B., "Separating the debate on CO2 utilisation from carbon capture and storage", Environmental Science and Policy, Vol. 60, (2016), 38-43. (https://doi.org/ 10.1016/j.envsci.2016.03.001).

12.   North, M. and Styring, P., "Perspectives and visions on CO2 capture and utilisation", Faraday Discussions, Vol. 183, (2015), 489-502. (https://doi.org/10.1039/c5fd90077h).

13.   Kashefi, K., Pardakhti, A., Shafiepour, M. and Hemmati, A., "Process optimization for integrated mineralization of carbon dioxide and metal recovery of red mud", Journal of Environmental Chemical Engineering, Vol. 8, No. 2,  (2020), 103638. (https://doi.org/10.1016/j.jece.2019.103638).

14.   Bodénan, F., Bourgeois, F., Petiot, C., Augé, T., Bonfils, B., Julcour-Lebigue, C., Guyot, F., Boukary, A., Tremosa, J., Lassin, A., Gaucher, E.C. and Chiquet, P., "Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project)", Minerals Engineering, Vol. 59, (2014), 52-63. (https://doi.org/10.1016/j.mineng.2014.01.011).

15.   Kim, M.J., Pak, S.Y., Kim, D. and Jung, S., "Optimum conditions for extracting Ca from CKD to store CO2 through indirect mineral carbonation", KSCE Journal of Civil Engineering, Vol. 21, (2017), 629-35. (https://doi.org/10.1007/s12205-016-0913-7).

16.   Mo, L., "Carbon dioxide sequestration on steel slag", Carbon dioxide sequestration in cementitious construction materials: Woodhead Publishing Series in Civil and Structural Engineering, Elsevier, (2018), 175-197. (https://doi.org/10.1016/B978-0-08-102444-7.00008-3).

17.   Nduagu, E., Bergerson, J. and Zevenhoven, R., "Life cycle assessment of CO2 sequestration in magnesium silicate rock-A comparative study", Energy Conversation and Management, Vol. 55, (2012), 116-126. (https://doi.org/10.1016/j.enconman.2011.10.026).

18.   Ji, L. and Yu, H., "Carbon dioxide sequestration by direct mineralization of fly ash", Carbon dioxide sequestration in cementitious construction materials: Woodhead Publishing Series in Civil and Structural Engineering, Elsevier; (2018), 13-37. (https://doi.org/10.1016/B978-0-08-102444-7.00002-2).

19.   Chu, G., Wang, L., Liu, W., Zhang, G., Luo, D., Wang, L., Liang, B. and Li, C., "Indirect mineral carbonation of chlorinated tailing derived from Ti‐bearing blast‐furnace slag coupled with simultaneous dechlorination and recovery of multiple value‐added products", Greenhouse Gases: Science and Technology, Vol. 9, (2019), 52-66. (https://doi.org/10.1002/ghg.1832).

20.   Zapp, P., Schreiber, A., Marx, J., Haines, M., Hake, J.F. and Gale, J., "Overall environmental impacts of CCS technologies-A life cycle approach", International Journal of Greenhouse Gas Control, Vol. 8, (2012), 12-21. (https://doi.org/10.1016/j.ijggc.2012.01.014).

21.   Cuéllar-Franca, R.M. and Azapagic, A., "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts", Journal of CO2 Utilization, Vol. 9, (2015), 82-102. (https://doi.org/10.1016/j.jcou.2014.12.001).

22.   Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I., Life cycle assessment: Theory and practice, (2017), 1-1216. (https://doi.org/10.1007/978-3-319-56475-3). (https://doi.org/10.1007/978-3-319-56475-3)

23.   Atta, A.P., Diango, A., N’Guessan, Y., Descombes, G., Morin, C. and Jaecker-Voirol, A., "Life cycle assessment, technical and economical analyses of jatropha biodiesel for electricity generation in remote areas of côte d’Ivoire" , Refining ciomass residues for sustainable energy and bioproducts: Technology, Advances, Life Cycle Assessment, and Economics, Elsevier, (2020), 523-542. (https://doi.org/10.1016/B978-0-12-818996-2.00024-7)

24.   Van Hung, N., Migo, M.V., Quilloy, R., Chivenge, P. and Gummert, M., "Life cycle assessment applied in rice production and residue management", In Sustainable rice straw management, Springer, (2020), 161-174. (https://doi.org/10.1007/978-3-030-32373-8_10)

25.   Jolliet, O., Antón, A., Boulay, A.-M., Cherubini, F., Fantke, P., Levasseur, A., McKone, T.E., Michelsen, O., Milà i Canals, L., Motoshita, M., Pfister, S., Verones, F., Bruce Vigon, B. and Frischknecht, R., "Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use", The International Journal of Life Cycle Assessment, Vol. 23, (2018), 2189-2207. (https://doi.org/10.1007/s11367-018-1443-y).

26    Hertwich, E.G., Aaberg, M., Singh, B. and Strømman, A.H., "Life-cycle assessment of carbon dioxide capture for enhanced oil recovery", Chinese Journal of Chemical Engineering, Vol. 16, (2008), 343-353. (https://doi.org/10.1016/S1004-9541(08)60085-3).

27.   Koroneos, C., Dompros, A., Roumbas, G. and Moussiopoulos, N., "Life cycle assessment of kerosene used in aviation", The International Journal of Life Cycle Assessment, Vol. 10, (2005), 417-424. (https://doi.org/10.1065/lca2004.12.191).

28.   Sills, D.L., Van Doren, L.G., Beal, C. and Raynor, E., "The effect of functional unit and co-product handling methods on life cycle assessment of an algal biorefinery", Algal Research, Vol. 46, (2020), 101770. (https://doi.org/10.1016/j.algal.2019.101770).

29.   Hoseinzadeh, S., Ghasemiasl, R., Javadi, M.A. and Heyns, P.S., "Performance evaluation and economic assessment of a gas power plant with solar and desalination integrated systems", Desalination and Water Treatment, Vol. 174, (2020), 11-25. (http://doi.org/10.5004/dwt.2020.24850).

30.   Hoseinzadeh, S., Yargholi, R., Kariman, H. and Heyns, P.S., "Exergeoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy", Environmental Progress and Sustainable Energy, (2020), e13405. (https://doi.org/10.1002/ep.13405).

31.   Kariman, H., Hoseinzadeh, S., Shirkhani, A., Heyns, P.S. and Wannenburg, J., "Energy and economic analysis of evaporative vacuum easy desalination system with brine tank", Journal of Thermal Analysis and Calorimetry, Vol. 140, (2019), 1935-1944. (https://doi.org/10.1007/s10973-019-08945-8).

32.   http://iranalumina.ir/ n.d.

33.   Schreiber, A., Zapp, P. and Marx, J., "Meta‐analysis of life cycle assessment studies on electricity generation with carbon capture and storage", Journal of Industrial Ecology, Vol. 16, (2012), S155-S168. (https://doi.org/10.1111/j.1530-9290.2011.00435.x).

34.   Jørgensen, A., Le Bocq, A., Nazarkina, L. and Hauschild, M., "Methodologies for social life cycle assessment", The International Journal of Life Cycle Assessment, Vol. 13, (2008), 96. (https://doi.org/10.1065/lca2007.11.367).

35.   Viebahn, P., Nitsch, J., Fischedick, M., Esken, A., Schüwer, D., Supersberger, N., UlrichZuberbühler, U. and Edenhofer, O., "Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany", International Journal of Greenhouse Gas Control, Vol. 1, No. 1,  (2007), 121-133. (https://doi.org/10.1016/S1750-5836(07)00024-2).

36.   Carvalho, A., Matos, H.A. and Gani, R., "SustainPro—A tool for systematic process analysis, generation and evaluation of sustainable design alternatives", Computers and Chemical Engineering, Vol. 50, (2013), 8-27. (https://doi.org/10.1016/j.compchemeng.2012.11.007).

37.   Zhang, X., Singh, B., He, X., Gundersen, T., Deng, L. and Zhang, S., "Post-combustion carbon capture technologies: Energetic analysis and life cycle assessment", International Journal of Greenhouse Gas Control, Vol. 27, (2014), 289-298. (https://doi.org/10.1016/j.ijggc.2014.06.016).

38.   Pehnt, M. and Henkel, J., "Life cycle assessment of carbon dioxide capture and storage from lignite power plants", International Journal of Greenhouse Gas Control, Vol. 3, No. 1, (2009), 49-66. (https://doi.org/10.1016/j.ijggc.2008.07.001).

39.   Yuen, Y.T., Sharratt, P.N. and Jie, B., "Carbon dioxide mineralization process design and evaluation: Concepts, case studies, and considerations", Environmental Science and Pollution Research, Vol. 23, (2016), 22309-22330. (https://doi.org/10.1007/s11356-016-6512-9).

40.   Khoo, H.H., Bu, J., Wong, R.L., Kuan, S.Y. and Sharratt, P.N., "Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation", Energy Procedia, Vol. 4 (2011), 2494-2501. (https://doi.org/10.1016/j.egypro.2011.02.145).

41.   Xu, X., Cheng, K., Wu, H., Sun, J., Yue, Q. and Pan, G., "Greenhouse gas mitigation potential in crop production with biochar soil amendment—A carbon footprint assessment for cross‐site field experiments from China", GCB Bioenergy, Vol. 11, No. 4, (2019), 592-605. (https://doi.org/10.1111/gcbb.12561).

42.   Weidema, B.P., Thrane, M., Christensen, P., Schmidt, J. and Løkke, S., "Carbon footprint: A catalyst for life cycle assessment?" Journal of Industrial Ecology, Vol. 12, No. 1, (2008), 3-6. (https://doi.org/ 10.1111/j.1530-9290.2008.00005.x).

43.   Frischknecht, R., Fantke, P., Tschümperlin, L., Niero, M., Antón, A., Bare, J., Boulay, A.-M., Cherubini, F., Hauschild, M.Z., Henderson, A., Levasseur, A., McKone, T.E., Michelsen, O., Milà i Canals, L., Pfister, S., Ridoutt, B., Rosenbaum, R.K., Verones, F., Vigon, B. and Jolliet, O., "Global guidance on environmental life cycle impact assessment indicators: Progress and case study", The International Journal of Life Cycle Assessment, Vol. 21, (2016), 429-442. (https://doi.org/10.1007/s11367-015-1025-1).

44.   Mulrow, J., Machaj, K., Deanes, J. and Derrible, S., "The state of carbon footprint calculators: An evaluation of calculator design and user interaction features", Sustainable Production and Consumption, Vol. 18, (2019), 33-40. (https://doi.org/10.1016/j.spc.2018.12.001).

45.   Scipioni, A., Manzardo, A., Mazzi, A. and Mastrobuono, M., "Monitoring the carbon footprint of products: A methodological proposal", Journal of Cleaner Production, Vol. 36, (2012), 94-101. (https://doi.org/10.1016/j.jclepro.2012.04.021).

46.   Matthews, H.S., Hendrickson, C.T. and Weber, C.L., "The importance of carbon footprint estimation boundaries", Environmental Science & Technology, Vol. 42, (2008), 5839-5842. (https://doi.org/ 10.1021/es703112w).

47.   Wintergreen, J. and Delaney, T., "ISO 14064, International standard for GHG emissions inventories and verification", Proceedings of 16th Annual International Emission Inventory Conference, Raleigh, NC, (2006), 4.

48.   Garcia, R. and Freire, F., "Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration", Journal of Cleaner Production, Vol. 66, (2014), 199-209. (https://doi.org/10.1016/j.jclepro.2013.11.073).

49.   Pandey, D., Agrawal, M. and Pandey, J.S., "Carbon footprint: current methods of estimation", Environmental and Monitoring Assessment, Vol. 178, (2011), 135-160. (https://doi.org/10.1007/s10661-010-1678-y).