Document Type: Research Article

Authors

Department of Electrical and Computer Engineering, Babol Noshirvni University of Technology, P. O. Box: 47148-71167, Babol, Mazandaran, Iran.

Abstract

This paper deals with the problem of maximizing the extracted power from a wind turbine in the presence of model uncertainties and input saturation. An adaptive second-order integral terminal sliding mode speed control method is utilized to address this problem. The presented method benefits from the advantages of several control techniques, i.e., adaptability, robustness, finite-time convergence, and the capability of coping with the input saturation. The robust nature of the designed controller causes its high performance in facing the uncertainties in the wind turbine model. In this paper, to compensate for the effect of input saturation, an auxiliary dynamic variable is added to the tracking error and also an adaptation law is designed so that the finite-time convergence of the closed-loop system can be achieved. Moreover, to reduce the mechanical stresses which are the result of the chattering phenomenon, a second-order sliding surface is employed. The finite-time convergence of the designed controller has been proven by the Lyapunov stability theorem in which the finite-time convergence of the tracking error to zero is guaranteed. Finally, to illustrate the effectiveness and satisfactory performance of the proposed controller, two comparative simulations are carried out. The results of this comparison show that the proposed controller has less error to track the optimal speed and when the model uncertainties and input saturation occur in the wind turbine system, the proposed controller is almost 3 % more efficient than the existing controllers.

Keywords

Main Subjects

1.     Bagheri, P. and Sun, Q., "Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics", ISA Transactions, Vol. 63, (2016), 233-241. (https://doi.org/10.1016/j.isatra.2016.04.008).

2.     Kumar, D. and Chatterjee, K., "A review of conventional and advanced MPPT algorithms for wind energy systems", Renewable and Sustainable Energy Reviews, Vol. 55, (2016), 957-970. (https://doi.org/10.1016/j.rser.2015.11.013).

3.     Mérida, J., Aguilar, L.T. and Dávila, J., "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization", Renewable Energy, Vol. 71, (2014), 715-728. (
https://doi.org/10.1016/j.renene.2014.06.030).

4.     Hand, M.M., "Variable-speed wind turbine controller systematic design methodology: A comparaison of nonlinear and linear model-based designs", National Renewable Energy Laboratory report TP-500-25540, National Renewable Energy Laboratory, Golden, Colorado, (1999). (https://doi.org/10.2172/12172).

5.     Ma, X., "Adaptive extremum control and wind turbine control", Ph.D. thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, (May 1997).

6.     Steinbuch, M., "Dynamic modelling and robust control of a wind energy conversion system", Ph.D. thesis, Delft University of Technology, (November 1989). (ISBN: 90-9003143-X).

7.     Bongers, P., "Modeling and identification of flexible wind turbines and a factorizational approach to robust control", Ph.D. thesis, Delft University of Technology, (1994). (ISBN: 90-370-0100-9).

8.     Ekelund, T., "Speed control of wind turbines in the stall region", Proceedings of IEEE International Conference on Control and Applications (CCA), Glasgow, U.K., (1994), 227-232. (https://doi.org/10.1109/CCA.1994.381194).

9.     Novak, P., Ekelund, T., Jovik, Y. and Schmidtbauer, B., "Modeling and control of variable-speed wind-turbine drive system dynamics", IEEE Control Systems Magazine, Vol. 15, No. 4, (1995), 28-37. (https://doi.org/10.1109/37.408463).

10.   Ebrahimkhani, S., "Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)- based wind turbines", ISA Transactions, Vol. 63, (2016), 343-354. (https://doi.org/10.1016/j.isatra.2016.03.003).

11.   Saravanakumar, R. and Jena, D., "Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine", International Journal of Electrical Power & Energy Systems, Vol. 69, (2015), 421-429. (https://doi.org/10.1016/j.ijepes.2015.01.031).

12.   Bossoufi, B., Karim, M., Lagrioui, A., Taoussi, M. and Derouich, A., "Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation", Renewable Energy, Vol. 81, (2015), 903-917. (https://doi.org/10.1016/j.renene.2015.04.013).

13.   Şeker, M., Zergeroğlu, E. and Tatlicioğlu, E., "Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: A robust backstepping approach", International Journal of Systems Science, Vol. 47, No. 2, (2016), 420-432. (https://doi.org/10.1080/00207721.2013.834087).

14.   Moradi, H. and Vossoughi, G., "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers", Energy, Vol. 90, Part. 2, (2015), 1508-1521. (https://doi.org/10.1016/j.energy.2015.06.100).

15.   Jafarnejadsani, H., Pieper, J. and Ehlers, J., "Adaptive control of a variable-speed variable-pitch wind turbine using RBF neural network", IEEE Transactions on Control Systems Technology, Vol. 21, No. 6, (2012), 216-222. (https://doi.org/10.1109/TCST.2012.2237518).

16.   Saoudi, K. and Harmas, M.N., "Enhanced design of an indirect adaptive fuzzy sliding mode power system stabilizer for multi-machine power systems", International Journal of Electrical Power & Energy Systems, Vol. 54, (2014), 425-431. (https://doi.org/10.1016/j.ijepes.2013.07.034).

17.   Eker, I., "Second-order sliding mode control with experimental application", ISA Transactions, Vol. 49, No. 3, (2010), 394-405. (https://doi.org/10.1016/j.isatra.2010.03.010).

18.   Pukdeboon, C. and Kumam, P., "Robust optimal sliding mode control for spacecraft position and attitude maneuvers", Aerospace Science and Technology, Vol. 43, (2015), 329-342. (https://doi.org/10.1016/j.ast.2015.03.012).

19.   Chiu, C., "Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems", Automatica, Vol. 48, No. 2, (2012), 316-326. (https://doi.org/10.1016/j.automatica.2011.08.055).

20.   Feng, Y., Yu, X. and Man, Z., "Non-singular terminal sliding mode control of rigid manipulators", Automatica, Vol. 38, No. 12, (2002), 2159-2167. (https://doi.org/10.1016/S0005-1098(02)00147-4).

21.   Mondal, S. and Mahanta, C., "Adaptive second order terminal sliding mode controller for robotic manipulators", Journal of the Franklin Institute, Vol. 351, No. 4, (2014), 2356-2377. (https://doi.org/10.1016/j.jfranklin.2013.08.027).

22.   Feng, Y., Yu, X. and Han, F., "On nonsingular terminal sliding mode control of nonlinear systems", Automatica, Vol. 49, No. 6, (2013), 1715-1722. (https://doi.org/10.1016/j.automatica.2013.01.051).

23.   Abolvafaei, M. and Ganjefar, S., "Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control", Renewable Energy, Vol. 139, (2019), 1437-1446. (https://doi.org/10.1016/j.renene.2019.03.044).

24.   Azar, A.T. and Serrano, F.E., Design and modelling of anti wind up PID controllers, Complex system modelling and control through intelligent soft computations, Vol. 319, Springer, Switzerland, (2015), 1-44. (https://doi.org/10.1007/978-3-319-12883-2_1).

25.   Zhang, X., Zhao, J. and Li, X., "Stability analysis and design of uncertain discrete-time switched systems with actuator saturation using anti-windup and multiple Lyapunov functions approach", Asian Journal of Control, Vol. 19, No. 1, (2017), 325-331. (https://doi.org/10.1002/asjc.1364).

26    Chen, M., Tao, G. and Jiang, B., "Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation", IEEE transactions on neural networks and learning systems, Vol. 26, No. 9, (2014), 2086-2097. (https://doi.org/10.1109/TNNLS.2014.2360933).

27.   Edalati, L., Sedigh, A.K., Shooredeli, M.A. and Moarefianpour, A., "Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints", Mechanical Systems and Signal Processing, Vol. 100, (2018), 311-329. (https://doi.org/10.1016/j.ymssp.2017.07.036).

28.   Chen, Q., Shi, L., Na, J., Ren, X. and Nan, Y., "Adaptive echo state network control for a class of pure-feedback systems with input and output constraints", Neurocomputing, Vol. 275, (2018), 1370-1382. (https://doi.org/10.1016/j.neucom.2017.09.083).

29.   Cui, R., Zhang, X. and Cui, D., "Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities", Ocean Engineering, Vol. 123, (2016), 45-54. (https://doi.org/10.1016/j.oceaneng.2016.06.041).

30.   Li, Y., Tong, S. and Li, T., "Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation", Fuzzy Sets and Systems, Vol. 248, (2014), 138-155. (https://doi.org/10.1016/j.fss.2013.11.006).

31.   Zhang, Q. and Dong, J., "Disturbance-observer-based adaptive fuzzy control for nonlinear state constrained systems with input saturation and input delay", Fuzzy Sets and Systems, Vol. 392, (2019), 77-92. (https://doi.org/10.1016/j.fss.2019.06.014).

32.   Dastres, H., Rezaie, B. and Baigzadehnoe, B., "Neural-network-based adaptive backstepping control for a class of unknown nonlinear time-delay systems with unknown input saturation", Neurocomputing, Vol. 398, (2020), 131-152. (https://doi.org/10.1016/j.neucom.2020.02.070).

33.   Qiao, W., Qu, L. and Harley, R.G., "Control of IPM synchronous generator for maximum wind power generation considering magnetic saturation", IEEE Transactions on Industry Applications, Vol. 45, No. 3, (2009), 1095-1105. (https://doi.org/10.1109/TIA.2009.2018914).

34.   Torchani, B., Sellami, A. and Garcia, G., "Variable speed wind turbine control by discrete-time sliding mode approach", ISA Transactions, Vol. 62, (2016), 81-86. (https://doi.org/10.1016/j.isatra.2016.01.001).

35.   Zaafouri, Ch., Torchani, B., Sellami, A. and Garcia, G., "Uncertain saturated discrete-time sliding mode control for a wind turbine using a two-mass model", Asian Journal of Control, Vol. 20, No. 2, (2018), 802-818. (https://doi.org/10.1002/asjc.1594).

36.   Errouissi, R., Al-Durra, A. and Debouza, M., "A novel design of PI current controller for PMSG-based wind turbine considering transient performance specifications and control saturation", IEEE Transactions on Industrial Electronics, Vol. 65, No. 11, (2018), 8624-8634. (https://doi.org/10.1109/TIE.2018.2814007).

37.   Thomsen, S.C., "Nonlinear control of a wind turbine", MS thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, (2006).

38.   Hoseinzadeh, S., Bahrami, A., Mirhosseini, S.M., Sohani, A. and Heyns, P.S., "A detailed experimental airfoil performance investigation using an equipped wind tunnel", Flow Measurement and Instrumentation, Vol. 72, (2020), 101717. (https://doi.org/10.1016/j.flowmeasinst.2020.101717).

39.   Bahrami, A., Hoseinzadeh, S., Heyns, P.S. and Mirhosseini, S.M., "Experimental investigation of co-flow jet’s airfoil flow control by hot wire anemometer", Review of Scientific Instruments, Vol. 90, (2019), 125107. (https://doi.org/10.1063/1.5113592).

40.   Hammerum, K., "A fatigue approach to wind turbine control", MS thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, (2006).

41.   Colombo, L., Corradini, M.L., Ippoliti, G. and Orlando, G., "Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach", ISA Transactions, Vol. 96, (2020), 95-102. (https://doi.org/10.1016/j.isatra.2019.07.002).

42.   Mobayen, S. and Tchier, F., "Nonsingular fast terminal sliding-mode stabilizer for a class of uncertain nonlinear systems based on disturbance observer", Scientia Iranica, Vol. 24, No 3, (2017), 1410-1418. (https://doi.org/10.24200/SCI.2017.4123).

43.   Elbaset, A.A., Mohamed, Y.S., El-Sayed, A.-H.M. and Ahmed, A.E.H.A., Wind driven doubly fed induction generator, Springer, (2018). (http://doi.org/10.1007/978-3-319-70108-0)

44.   Jing, X., "Modeling and control of a doubly-fed induction generator for wind turbine-generator systems", MS thesis, Marquett University, Milwaukee, USA, (2012).