Document Type : Research Article

Authors

1 Department of Electrical Engineering, Shahed University, P. O. Box: 18155-159, Tehran, Tehran, Iran.

2 Space Transportation Research Institute, Iranian Space Research Center, P. O. Box 13445-754, Tehran, Tehran, Iran.

Abstract

In recent decade, Perovskite Solar Cells (PSCs) have received considerable attention compared to other photovoltaic technologies. Despite the improvement of Power Conversion Efficiency (PCE) of PSCs, the chemical instability problem is still a matter of challenge. In this study, we have fabricated two kinds of PSCs based on gold and carbon electrodes with the optimal PCE of about 15 % and 10.2 %, respectively. We prepared a novel carbon electrode using carbon black nanopowder and natural graphite flaky powder for Hole Transport Material (HTM) free carbon-based PSC (C-PSC). Current density-voltage characteristics over time were measured to compare the stability of devices. Scanning Electron Microscope (SEM) and Energy-dispersive X-ray Spectroscopy (EDS) analyses were carried out to study applied materials, layer, and surface structures of the cells. The crystal structure of perovskite and its association with the stability of PSCs were analyzed using an obtained X-ray diffraction (XRD) pattern. As a result, the constructed HTM-free C-PSC demonstrated high stability against air, retaining up to 90 % of its optimal efficiency after 2000 h in the dark under ambient conditions (relative humidity of (50 ± 5); average room temperature of 25 °C) in comparison to constructed gold-based PSCs (Gold-PSC) which are not stable at times. The experimental results show that novel low-cost and low-temperature carbon electrode could represent a wider prospect of reaching better stability for PSCs in the future.
 

Keywords

Main Subjects

1.     Almora, O., Vaillant-Roca, L. and Garcia-Belmonte, G., "Perovskite solar cells: A brief introduction and some remarks", Revista Cubana de Fisica, Vol. 34, No. 1, (2017), 58-68. (http://revistacubanadefisica.org/index.php/rcf/article/view/RCF_34-1_58).
2.     Chouk, R., Haouanoh, D., Aguir, C., Bergaoui, M., Toubane, M., Bensouici, F., Tala-Ighil, R., Erto, A. and Khalfaoui, M., "Dye sensitized TiO2 and ZnO charge transport layers for efficient planar perovskite solar cells: Experimental and DFT insights", Journal of Electronic Materials, Vol. 49, No. 2, (2020), 1396-1403. (https://doi.org/10.1007/s11664-019-07839-7).
3.     Wei, H. and Huang, J., "Halide lead perovskites for ionizing radiation detection", Nature Communications, Vol. 10, No. 1066, (2019). (https://doi.org/10.1038/s41467-019-08981-w).
4.     Kang, A.K., Zandi, M.H. and Gorji, N.E., "Fabrication and degradation analysis of perovskite solar cells with graphene reduced oxide as hole transporting layer", Journal of Electronic Materials, Vol. 49, (2020),2289-2295. (https://doi.org/10.1007/s11664-019-07893-1(.
5.     Maleki, E, Ranjbar, M. and Kahani, S.A., "The effect of antisolvent dropping delay time on the morphology and structure of the perovskite layer in the hole transport material free perovskite solar cells", Progress in Color, Colorants and Coatings, Vol. 14, No. 1, (2021), 47-54. (https://dx.doi.org/10.30509/pccc.2021.81671).
6.     Sarvari, R., Agbolaghi, S. and Massoumi, B., "Engineered organic halide perovskite solar cells by incorporation of surface‑manipulated graphenic nanosheets", Journal of Materials Science: Materials in Electronics, Vol. 30, No. 10, (2019), 9281-9288. (https://doi.org/10.1007/s10854-019-01258-4).
7.     Sarvari, R., Agbolaghi. S. and Massoumi, B., "Role of graphene ordered modifiers in regulating the organic halide perovskite devices", Optical Materials, Vol. 92, (2019), 81-86. (https://doi.org/10.1016/j.optmat.2019.04.014).
8.     Agbolaghi, S., "Efficacy beyond 17 % viaengineering the length and quality of grafts in organic halide perovskite/CNT photovoltaics", New Journal of Chemistry, Vol. 26, No. 43, (2019), 10567-10574. (https://doi.org/10.1039/C9NJ02074H).
9.     Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal of the American Chemical Society, Vol. 131, No. 17, (2009), 6050-6051. (https://doi.org/10.1021/ja809598r).
10.   Corpus-Mendoza, A.N., Cruz-Silva, B.S., Ramirez-Zúñiga, G., Moreno-Romero, P. M., Liu, F. and Hu, H., "Use of magnetic fields for surface modification of PbI2 layers to increase the performance of hybrid perovskite solar cells", Journal of Electronic Materials, Vol. 49,(2020), 3106-3113. (https://doi.org/10.1007/s11664-020-08009-w).
11.   Ankireddy, K., Lavery, B.W. and Druffel, T., "Atmospheric processing of perovskite solar cells using intense pulsed light sintering", Journal of Electronic Materials, Vol. 47, (2018), 1285-1292. (https://doi.org/10.1007/s11664-017-5893-y).
12.   Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A., Nazeeruddin, Md.K., Grätzel, M. and Seok, S.-Il, "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nature Photonics, Vol. 7, No. 6, (2013), 486-491. (https://doi.org/10.1038/nphoton.2013.80).
13.   Thakur, N., Mehra, R. and Devi, C., "Efficient design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide", Journal of Electronic Materials", Vol. 47, (2018),6935-6942. (https://doi.org/10.1007/s11664-018-6620-z).
14.   limi, B., Mollar, M., Marí, B. and Chtourou, R., "Thin film of perovskite (mixed-cation of lead bromide FA1−xMAxPbBr) obtained by one-step method", Journal of Electronic Materials", Vol. 48, (2019), 8014-8023. (https://doi.org/10.1007/s11664-019-07638-0).
15.   Phan Vu, T., Nguyen, M.T., Nguyen, T.T., Vu, T.D., Nguyen, D.L., An, N.M., Nguyen, M.H., Sai, C.D., Bui, V.D., Hoang, C.H., Truong, T.T., Lai, N.D. and Tran, T.N., "Three-photon absorption induced photoluminescence in organo-lead mixed halide perovskites", Journal of Electronic Materials", Vol. 46, (2017), 3622-3626. (https://doi.org/10.1007/s11664-017-5407-y).
16.   Hadadian, M., Smått, J.H. and Correa-Baena, J.P., "The role of carbon-based materials in enhancing the stability of perovskite solar cells", Energy & Environmental Science, Vol. 13, No. 5, (2020), 1377-1407. (https://doi.org/10.1039/C9EE04030G).
17.   Hosseinnezhad, M., "Enhanced performance of dye-sensitized solar cells using perovskite/DSSCs tandem design", Journal of Electronic Materials, Vol. 48, (2019), 5403-5408. (https://doi.org/10.1007/s11664-019-07272-w).
18.   Leijtens, T., Eperon, G.E., Pathak, S., Abate, A., Lee, M.M. and Snaith, H.J., "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells", Nature Communications, Vol. 4, No. 1, (2013), 1-8. (https://doi.org/10.1038/ncomms3885).
19.   Domanski, K., Correa-Baena, J.P., Mine, N., Nazeeruddin, Md.K., Abate, A., Saliba, M., Tress, W., Hagfelft, A. and Grätzel, M., "Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells", ACS Nano, Vol. 10, No. 6, (2016), 6306-6314. (https://doi.org/10.1021/acsnano.6b02613).
20.   Lee, J., Singh, S., Kim, S. and Baik, S., "Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells", Carbon, Vol. 157, (2020), 731-740. (https://doi.org/10.1016/j.carbon.2019.10.101).
21.   Cao, K., Zuo, Z., Cui, J., Shen, Y., Moehl, T., Zakeeruddin, S.M., Grätzel, M. and Wang, M., "Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture", Nano Energy, Vol. 17, (2015), 171-179. (https://doi.org/10.1016/j.nanoen.2015.08.009).
22.   Zhang, N., Guo, Y., Yin, X., He, M. and Zou, X., "Spongy carbon film deposited on a separated substrate as counter electrode for perovskite-based solar cell", Materials Letters, Vol. 182, (2016), 248-252. (https://doi.org/10.1016/j.matlet.2016.07.004).
23.   Aitola, K., Domanski, K., Correa‐Baena, J.P., Sveinbjörnsson, K., Saliba, M., Abate, A., Grätzel, M., Kauppinen, E., Johansson, M.J., Tress, W., Boschloo, G. and Hagfeldt, A., "High temperature‐stable perovskite solar cell based on low‐cost carbon nanotube hole contact", Advanced Materials, Vol. 29, No. 17, (2017), 1606398. (https://doi.org/10.1002/adma.201606398).
24.   Meng, F., Gao, L., Yan, Y., Cao, J., Wang, N., Wang, T. and Ma, T., "Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells", Carbon, Vol. 145, (2019), 290-296. (https://doi.org/10.1016/j.carbon.2019.01.047).
25.   Fagiolari, L. and Bella, F., "Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells, Energy & Environmental Science, Vol. 12, No. 12, (2019), 3437-3472. (https://doi.org/10.1039/C9EE02115A).
26.   Yang, Y., Xiao, J., Wei, H., Zhu, L., Li, D., Luo, Y., Wu, H. and Meng, Q., "An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells", RSC Advances, Vol. 4, No. 95, (2014), 52825-52830. (https://doi.org/10.1039/C4RA09519G).
27.   Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Wong, L.H., Xiong, Q., Zhang, J., Batabya, S.K., Mhaisalkar, S.G. and Mathews, N., "Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells", ACS Nano, Vol. 8, No. 7, (2014), 6797-6804. (https://doi.org/10.1021/nn501096h).
28.   Wang, S., Jiang, P., Shen, W., Mei, A., Xiong, S., Jiang, X., Rong, Y., Tang, Y., Hu, Y. and Han, H., "A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells", Chemical Communications, Vol. 55, No. 19, (2019), 2765-2768. (https://doi.org/10.1039/C8CC09905G).
29.   Zhou, H., Shi, Y., Wang, K., Dong, Q., Bai, X., Xing, Y.,Du, Y. and Ma, T., "Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells", The Journal of Physical Chemistry C, Vol. 119, No. 9, (2015), 4600-4605. (https://doi.org/10.1021/jp512101d).
30.   Kay, A. and Grätzel, M., "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Solar Energy Materials and Solar Cells, Vol. 44, No. 1, (1996), 99-117. (https://doi.org/10.1016/0927-0248(96)00063-3).
31.   Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y. and Ma, T., "Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode", The Journal of Physical Chemistry Letters, Vol. 5, No. 18, (2014), 3241-3246. (https://doi.org/10.1021/jz5017069).
32.   Liu, Z., Shi, T., Tang, Z., Sun, B. and Liao, G., "Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity", Nanoscale, Vol. 8, No. 13, (2016), 7017-7023. (https://doi.org/10.1039/C5NR07091K).
33.   Fu, H., "Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells", Solar Energy Materials and Solar Cells, Vol. 193, (2019), 107-132. (https://doi.org/10.1016/j.solmat.2018.12.038).
34.   Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, Md.K. and Grätzel, M., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells", Journal of the American Chemical Society, Vol. 134, No. 42, (2012), 17396-17399. (https://doi.org/10.1021/ja307789s).
35.   Wang, H., Hu, X. and Chen, H., "The effect of carbon black in carbon counter electrode for CH3NH3PbI3/TiO2 heterojunction solar cells", RSC Advances, Vol. 5, No. 38, (2015), 30192-30196. (https://doi.org/10.1039/C5RA02325D).
36.   Ku, Z., Rong, Y., Xu, M., Liu, T. and Han, H., "Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode", Scientific Reports, Vol. 3, No. 3132, (2013). (https://doi.org/10.1038/srep03132).
37.   Xu, M., Rong, Y., Ku, Z., Mei, A., Liu, T., Zhang, L., Li, X. and Han, H., "Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell", Journal of Materials Chemistry A, Vol. 2, No. 23, (2014), 8607-8611. (https://doi.org/10.1039/C4TA00379A).
38.   Rong, Y., Ku, Z., Mei, A., Liu, T., Xu, M., Ko, S., Li, X. and Han, H., "Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes", The Journal of Physical Chemistry Letters, Vol. 5, No. 12, (2014), 2160-2164. (https://doi.org/10.1021/jz500833z).
39.   Xu, M., Liu, G., Li, X., Wang, H., Rong, Y., Ku, Z., Hu, M., Yang, Y., Liu, L., Liu, T. and Chen, J., "Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode", Organic Electronics, Vol. 14, No. 2, (2013), 628-634. (https://doi.org/10.1016/j.orgel.2012.12.015).
40.   Zhang, L., Liu, T., Liu, L., Hu, M., Yang, Y., Mei, A. and Han, H., "The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells", Journal of Materials Chemistry A, Vol. 3, No. 17, (2015), 9165-9170. (https://doi.org/10.1039/C4TA04647A).
41.   Fu, Q., Tang, X., Huang, B., Hu, T., Tan, L., Chen, L. and Chen, Y., "Recent progress on the long‐term stability of perovskite solar cells", Advanced Science, Vol. 5, No. 5, (2018), 1700387. (https://doi.org/10.1002/advs.201700387).
42.   Khenkin, M.V., Katz, E.A., Abate, A., Bardizza, G., Berry, J.J., Brabec, C. and Cheacharoen, R., "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures", Nature Energy, Vol. 5, No. 1, (2020), 35-49. (https://doi.org/10.1038/s41560-019-0529-5).
43.   Wang, Y., Wu, T., Barbaud, J., Kong, W., Cui, D., Chen, H., Yang, X. and Han, L., "Stabilizing heterostructures of soft perovskite semiconductors", Science, Vol. 365, No. 6454, (2019), 687-691. (https://doi.org/10.1126/science.aax8018).
44.   Wang, R., Mujahid, M., Duan, Y., Wang, Z.K., Xue, J. and Yang, Y., "A review of perovskites solar cell stability", Advanced Functional Materials, Vol. 29, No. 47, (2019), 1808843. (https://doi.org/10.1002/adfm.201808843).
45.   Hong, Q.M., Xu, R.P., Jin, T.Y., Tang, J.X. and Li, Y.Q., "Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films", Organic Electronics, Vol. 67, (2019), 19-25. (https://doi.org/10.1002/solr.201900394).
46.   Wu, X., Xie, L., Lin, K., Lu, J., Wang, K., Feng, W., Fan, B. and Wei, Z., "Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes", Journal of Materials Chemistry A, Vol. 7, No. 19, (2019), 12236-12243. (https://doi.org/10.1039/C9TA02014D).
47.   Chu, Q.Q., Ding, B., Peng, J., Shen, H., Li, X., Liu, Y. and Catchpole, K.R., "Highly stable carbon-based perovskite solar cell with a record efficiency of over 18 % via hole transport engineering", Journal of Materials Science & Technology, Vol. 35, No. 6, (2019), 987-993.(https://doi.org/10.1016/j.jmst.2018.12.025).
48.   Wang, S., Liu, H., Bala, H., Zong, B., Huang, L., Guo, Z.A. and Zhang, Z., "A highly stable hole-conductor-free CsxMA1-xPbI3 perovskite solar cell based on carbon counter electrode", Electrochimica Acta, Vol. 335, (2020), 135686. (https://doi.org/10.1016/j.electacta.2020.135686).
49.   Chen, H. and Yang, S., "Stabilizing and scaling up carbon-based perovskite solar cells", Journal of Materials Research, Vol. 32, No. 16, (2017), 3011-3020. (https://doi.org/10.1557/jmr.2017.294).
50.   Yu, Z., Chen, B., Liu, P., Wang, C., Bu, C., Cheng, N. and Zhao, X., "Stable organic–inorganic perovskite solar cells without hole‐conductor layer achieved via cell structure design and contact engineering", Advanced Functional Materials, Vol. 26, No. 27, (2016), 4866-4873. (https://doi.org/10.1002/adfm.201504564).
51.   Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J. and Snaith, H.J., "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells", Nano Letters, Vol. 14, No. 10, (2014), 5561-5568. (https://doi.org/10.1021/nl501982b).
52.   Baranwal, A.K., Kanaya, S., Peiris, T.N., Mizuta, G., Nishina, T., Kanda, H. and Ito, S.,"100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes", ChemSusChem, Vol. 9, No. 18, (2016), 2604-2608. (https://doi.org/10.1002/cssc.201600933).
53.   Wang, P., Chai, N., Wang, C., Hua, J., Huang, F., Peng, Y. and Cheng, Y.B., "Enhancing the thermal stability of the carbon-based perovskite solar cells by using a CsxFA1-xPbBrxI3-x light absorber", RSC Advances, Vol. 9, No. 21, (2019), 11877-11881. (https://doi.org/10.1039/C9RA00043G).
54.   Xiang, S., Li, W., Wei, Y., Liu, J., Liu, H., Zhu, L. and Chen, H., "Natrium doping pushes the efficiency of carbon-based CsPbI3 perovskite solar cells to 10.7 %", iScience, Vol. 15, (2019), 156-164. (https://doi.org/10.1016/j.isci.2019.04.025).
55.   Liu, H., Bala, H., Zhang, B., Zong, B., Huang, L., Fu, W. and Zhan, Z., "Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells", Journal of Alloys and Compounds, Vol. 736, (2018), 87-92. (https://doi.org/10.1016/j.jallcom.2017.11.081).
56.   Gouda, L., Rietwyk, K.J., Hu, J., Kama, A., Ginsburg, A., Priel, M. and Zaban, A., "High-resolution study of TiO2 contact layer thickness on the performance of over 800 perovskite solar cells", ACS Energy Letters, Vol. 2, No. 10, (2017), 2356-2361. (https://doi.org/10.1021/acsenergylett.7b00718).
57.   Sung, Y.M., "Deposition of TiO2 blocking layers of photovoltaic cell using RF magnetron sputtering technology", Energy Procedia, Vol. 34, (2013), 582-588. (https://doi.org/10.1016/j.egypro.2013.06.788).
58.   Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. and Snaith, H.J., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, Vol. 338, No. 6107, (2012), 643-647. (https://doi.org/10.1126/science.1228604).
59.   Aharon, S., Gamliel, S., El Cohen, B. and Etgar, L., "Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells", Physical Chemistry Chemical Physics, Vol. 16, No. 22, (2014), 10512-10518. (https://doi.org/10.1039/C4CP00460D).
60.   Laban, W.A. and Etgar, L., "Depleted hole conductor-free lead halide iodide heterojunction solar cells", Energy & Environmental Science, Vol. 6, No. 11, (2013), 3249-3253. (https://doi.org/10.1039/C3EE42282H).
61.   Yue, G., Chen, D., Wang, P., Zhang, J., Hu, Z. and Zhu, Y., "Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells", Electrochimica Acta, Vol. 218, (2016), 84-90. (https://doi.org/10.1016/j.electacta.2016.09.112).
62.   Liu, Z., Sun, B., Shi, T., Tang, Z. and Liao, G., "Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS", Journal of Materials Chemistry A, Vol. 4, No. 27, (2016), 10700-10709. (https://doi.org/10.1039/C6TA02851A).
63.   Chang, X., Li, W., Zhu, L., Liu, H., Geng, H., Xiang, S. and Chen, H., "Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability", ACS Applied Materials & Interfaces, Vol. 8, No. 49, (2016), 33649-33655. (https://doi.org/10.1021/acsami.6b11393).
64.   Li, J., Yao, J.X., Liao, X.Y., Yu, R.L., Xia, H.R., Sun, W.T. and Peng, L.M., "A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes", RSC Advances, Vol. 7, No. 34, (2017), 20732-20737. (https://doi.org/10.1039/C7RA00066A).
65.   Meng, F., Liu, A., Gao, L., Cao, J., Yan, Y., Wang, N. and Ma, T., "Current progress in interfacial engineering of carbon-based perovskite solar cells", Journal of Materials Chemistry A, Vol. 7, No. 15, (2019), 8690-8699. (https://doi.org/10.1039/C9TA01364D).
66.   Xiao, Y., Wang, C., Kondamareddy, K.K., Liu, P., Qi, F., Zhang, H. and Zhao, X.Z., "Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold", Journal of Power Sources, Vol. 422, (2019), 138-144. (https://doi.org/10.1016/j.jpowsour.2019.03.039).
67.   Liu, J., Zhou, Q., Thein, N.K., Tian, L., Jia, D., Johansson, E.M. and Zhang, X., "In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells", Journal of Materials Chemistry A, Vol. 7, No. 22, (2019), 13777-13786. (https://doi.org/10.1039/C9TA02772F).
68.   Zong, B., Fu, W., Guo, Z.A., Wang, S., Huang, L., Zhang, B. and Zhang, Z., "Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode", Journal of Colloid and Interface Science, Vol. 540, (2019), 315-321. (https://doi.org/10.1016/j.jcis.2019.01.035).
69.   Zhang, X., Zhou, Y., Li, Y., Sun, J., Lu, X., Gao, X. and Liu, J.M., "Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification", Journal of Materials Chemistry C, Vol. 7, No. 13, (2019), 3852-3861. (https://doi.org/10.1039/C9TC00374F).
70.   Li, W., Huang, Y., Liu, Y., Tekell, M.C. and Fan, D.E., "Three dimensional nanosuperstructures made of two-dimensional materials by design: Synthesis, properties, and applications", Nano Today, Vol. 29, (2019), 100799. (https://doi.org/10.1016/j.nantod.2019.100799).
71.   Hammouda, S.B., Salazar, C., Zhao, F., Ramasamy, D.L., Laklova, E., Iftekhar, S. and Sillanpää, M., "Efficient heterogeneous electro-Fenton incineration of a contaminant of emergent concern-cotinine-in aqueous medium using the magnetic double perovskite oxide Sr2FeCuO6 as a highly stable catalayst: Degradation kinetics and oxidation products", Applied Catalysis B: Environmental, Vol. 240, (2019), 201-214. (https://doi.org/10.1016/j.apcatb.2018.09.002).
72.   Hu, Y., Schlipf, J., Wussler, M., Petrus, M.L., Jaegermann, W., Bein, T. and Docampo, P., "Hybrid perovskite/perovskite heterojunction solar cells", ACS Nano, Vol. 10, No. 6, (2016), 5999-6007. (https://doi.org/10.1021/acsnano.6b01535).
73.   Yu, H., Liu, X., Xia, Y., Dong, Q., Zhang, K., Wang, Z. and Li, Y., "Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells", Journal of Materials Chemistry A, Vol. 4, No. 1, (2016), 321-326. (https://doi.org/10.1039/C5TA08565A).
74.   Siddique, M.N., Ahmed, A. and Tripathi, P., "Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures", Journal of Alloys and Compounds, Vol. 735, (2018), 516-529. (https://doi.org/10.1016/j.jallcom.2017.11.114).
75.   Beegum, K.B., Paulose, M., Peter, V.J., Raphael, R., Sreeja, V.G. and Anila, E.I., "Study on the effect of synthesis temperature on the structural and surface morphological and optical properties of methyl ammonium lead iodide nanoparticles by sol-gel method", IOP Conference Series: Materials Science and Engineering, Vol. 149, International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2016), Bangalore, India, (2016), p. 012078. (https://doi.org/10.1088/1757-899X/149/1/012078).