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A B S T R A C T  
 

Over the past decades, power engineers have begun to connect power grids to other networks such as 
microgrids associated with renewable units using long transmission lines to provide higher reliability and 
greater efficiency in production and distribution besides saving resources. However, many dynamic problems 
such as low frequency oscillations were observed as a result of these connections. Low frequency oscillation is 
a normal phenomenon in most power systems that causes perturbations and, thus, the grid stability and 
damping process are of paramount importance. In this paper, to attenuate these oscillations, a novel method for 
designing Power System Stabilizer (PSS) is presented via Linear Parameter-Varying (LPV) approach for a 
Single Machine Infinite Bus system (SMIB). Because the system under study is subject to frequent load and 
production changes, designing the stabilizer based on the nominal model may not yield the desired 
performance. To guarantee the flexibility of the stabilizer with respect to the aforementioned issues, the power 
system polytopic representation is used. In order to apply the new method, the nonlinear equations of the 
system at each operating point, located in a polytope, are parametrically linearized by scheduling variables. 
Scheduling variables can be measured online in any operating point. By using this model and following the H∞ 
synthesis, feedback theories, and Linear Matrix Inequalities (LMIs), LPV controllers at all operating points are 
obtained. Finally, the simulation results verify the effectiveness of the proposed controller over classic and 
robust controllers with regard to uncertainties and changes in system conditions. 
 

https://doi.org/10.30501/jree.2021.306909.1265 

1. INTRODUCTION1 

Improving the stability of the power systems is one of the 
main goals, tasks, and aspirations of power engineers that has 
been of great significance in the last decades. The 
development of power grids, their diversity, and intertwining 
with renewable energies have brought about spontaneous low-
frequency oscillations. Small and sudden disturbances in the 
grid cause natural fluctuations in the system. In the normal 
case, these oscillations die out rapidly and the amplitude of 
the oscillations does not exceed a certain amount. However, 
these fluctuations may continue for a long time and at worst, 
their amplitudes increase. Such fluctuations in the grid pose 
serious risks, making it difficult to exploit the system 
optimally. Various experiences of interconnected power 
systems indicate that these oscillations are caused by the 
excitation of electric modes of synchronous generators. 
Today, power system stabilizers are widely used to robustly 
improve the stability and overcome the perturbations [1-4]. 
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Several methods have been proposed in the literature to 
attenuate the low frequency oscillations of power systems. 
Planning a control strategy is essential to damping 
electromechanical oscillations while designing and creating a 
power system. Classic control systems, robust, adaptive, 
optimal, H∞, fuzzy control-based methods, artificial neural 
networks, and a wide variety of optimization and artificial 
intelligence algorithms are some of the methods that have 
been developed in the field of stability and PSS design over 
the last years [5-10]. Utilizing fuzzy logic controller for 
designing a power system stabilizer was studied in an SMIB 
[11], showing the better performance of Fuzzy PSS (FPSS) 
over Classic PSS (CPSS) by considering the triangular and 
Gaussian functions to synthetize the controller. In [12], a 
predictive optimal adaptive PSS was presented for an SMIB. 
The simulation results of this optimization algorithm 
illustrated that the proposed POA-PSS method had preferable 
performance compared to CPSS. Another research was 
conducted to evaluate the output performance of CPSS and 
PID-PSS, which were optimized by Firefly and Bat 
algorithms. The results clarified that although CPSS with bat 
algorithm exhibited weak performance, the robust PID-PSS 
using firefly algorithm optimization could stabilize the 
proposed SMIB system for all operating conditions [13]. 
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Under [14] study, a stochastic metaheuristic population-based 
optimization algorithm named Sine Cosine Algorithm (SCA) 
was used for tuning PSS parameters. The research revealed 
that this technique was much more effective than other 
methods in exploration and exploitation to determine PSS 
parameters and improve the stability of a single machine 
connected to a large power system. An artificial intelligence 
method known as Ant Colony was employed to optimize a 
PID-PSS for an SMIB system. It was shown that the proposed 
control approach worked properly and the minimum 
overshoot for the frequency response and rotor angle were 
achieved [15]. 
   In further studies, several methods have also been presented 
for multi-machine power systems. In [16], the design of PSS 
using the root locus method was investigated. The technique 
could be applied directly to the power systems and provided 
clear indication of damping degrees for various combination 
of PSS parameters. The result of this research indicated that 
the perturbations caused by noise input could be suppressed 
by the root locus-based PSS structure. In another study, the 
design of a fixed parameter PSS for synchronous performance 
in a multi-machine power system was executed. The stabilizer 
was designed to compensate for the transfer function. It was 
shown that the transfer function remained relatively constant 
over all working points. It was concluded that when facing 
disturbances, the PSS transfer function and dc gains were 
selected in a way that the phase and gain errors around the 
modal frequencies were kept to a minimum. [17]. In [18], a 
new evolutionary algorithm-based approach was proposed to 
perfectly design multi-machine power system stabilizers. The 
presented method used the Particle Swarm Optimization 
(PSO) algorithm to search for optimal settings of PSS 
parameters. Two objective functions based on eigenvalues 
were considered to increase the attenuation of the 
electromechanical modes of the system. Robustness of the 
proposed method also depended on the initial guess, which is 
considered as its drawback. Thus, the simulation results were 
analyzed to guarantee the desired performance of the proposed 
PSS in the presence of various perturbations and loading 
issues. It was demonstrated that the novel Modified PSO 
algorithm presented in the paper brought about some 
advantages compared to previous PSO approaches. Further 
research was conducted to design a PSS for the multi-machine 
power system using the output feedback sliding mode control 
technique. The nonlinear model of the multi-machine power 
system was linearized at different operating points. The slide 
signal was taken as output and the output feedback sliding 
mode control was applied at an appropriate sampling rate. 
This method did not require complete states feedback and was 
easy to implement [19]. The main result of this research is that 
the proposed controller can damp the oscillations much faster 
than the classical PSS, which increases the responsiveness of 
the control system. In [20], an adaptive fuzzy control method 
was employed to form a decentralized load frequency 
controller in a two-zone interconnected power system. The 
Adaptive Fuzzy Load Frequency Controller (AFLFC) was 
implemented to enhance the frequency dynamic performance 
and transmitted power through the transmission lines during 
sudden load changes. The results illustrated that this method 
provided good attenuation control and reduced the frequency 
deviation overshoot in both regions. Gray Wolf Optimization 
(GWO) algorithm was tested to create a Wide-Area Power 
System Stabilizer (WAPSS) and it was examined in some 
multi-machine power systems. It was observed that the 

proposed strategy came with a multitude number of 
advantages such as damping the inter-area oscillations and 
compensating the detrimental effects of communication delays 
[21]. In [22], an optimal Model Reference Adaptive System 
(MRAS) was addressed to devise an effective PSS utilizing in 
multi-machine power systems. Through the suggested strategy 
in this research, the speed profile of the generator was 
enhanced and much more damping torque was provided upon 
injecting the stabilizing signals to the excitation part of the 
control system. The robust approach has also been of interest 
to researchers in recent years due to its impacts on improving 
system performance. One novel research investigated a robust 
strategy for a single machine infinite linked to a static 
synchronous compensator (STATCOM). The purpose of 
employing STATCOM was to regulate voltage and lessen the 
fluctuations via NSGII algorithm. The proposed system acts 
like a PSS to deal with disturbances. There were three 
scenarios considering PID controllers for speed loop, voltage 
loop, and both. The results illustrated that the third scenario 
positively affected the damping degree for both speed and 
voltage control aims [23]. It was shown in [24] that a robust 
power system stabilizer for enhancement of stability in power 
system ensured better performance in comparison with the 
conventional fuzzy-PID controller. The methods mentioned in 
this section for designing and tuning power system stabilizers 
present many drawbacks. In addition to the random selection 
of the initial population, local entrapment and inopportune 
convergence are among the disadvantageous of heuristic 
algorithms. Then, meta-heuristic algorithms have been 
introduced to compensate earlier issues. Some other studies 
have focused on linear parameter varying to achieve good 
performance for power system stabilizers. A Least Mean 
Square (LMS) method was used as an LPV identification 
algorithm in [25]. This algorithm was composed of the LPV 
model based on the interpolation of m linear local models and 
active and reactive power were considered as scheduling 
parameters. The simulation and experimental test showed that 
the applied methodology had a desirable damping effect on 
electromechanical oscillating terms. Also, another LPV 
system identification methodology was presented in [26]. 
Principal Component Analysis-based (PCA-based) parameter 
set mapping was employed to decrease the number of models 
and create a simpler LPV model. In this way, the 
computational burden of the modeling strategy was reduced. 
The suggested LPV controller verified the suppressing 
features and damping properties against fluctuations, 
especially in multi-machine power systems facing different 
operating conditions. Despite the relatively good 
performances of different systems, a strong mathematical 
basis is not included and even much time may be spent for 
solving optimization problems. Also, getting an accurate 
response due to the complexity of the systems could be 
difficult to reach. Additionally, the proposed robust PSS and 
CPSS tested in the literature mainly offer one simple 
controller for all operating points which cannot work under 
some uncertainties and system disturbances. On the other 
hand, an enhanced LPV-PSS presents separate controllers for 
the whole working points and uncertain circumstances. Online 
parameter tuning in LPV control systems is a major privilege 
amongst other controllers to adjust the PSS parameters due to 
unpredictable performances of a system. It is to be mentioned 
that proven control theories and lemmas support the LPV 
systems. 



V. Nazari et al. / JREE:  Vol. 9, No. 2, (Spring 2022)   59-74 
 

61 

Linear Parameter Varying (LPV) modeling refers to linear 
dynamical models and the description of their state space 
depends on an exogenous variable parameter. In these models, 
the exogenous parameter operates independently and the state 
space model is dependent on it, that is, the exogenous 
parameter changes are independent of the system and a unique 
linear state space model is defined for each parameter. 
Exogenous parameters are called scheduling parameters. LPV 
models have a profound relationship with gain-scheduling 
strategies which is, in fact, the extension of the classical gain-
scheduling method. The only difference is that in gain-
scheduling models, unlike LPV models, the free parameter is 
endogenous, meaning that it originates within the system. The 
basis of both theories is to parse a nonlinear controller and 
create a set of linear controllers for a nonlinear system [27-
28]. 
   The main purpose of this paper is to design a power system 
stabilizer using LPV control method which is used to enhance 
the oscillations’ damping of a single-machine power system 
connected to an infinite bus in a wide range of operating 
conditions. In order to apply this new technique, the nonlinear 
equations of the system at any operating points in a polytopic 
space are parameterized linearly by setting online-measured 
parameters. Next, the search space is reduced from a         
non-convex space to a convex sub-space to solve the 
optimization problem. Considering H∞ algorithm and 
optimization LMIs, the LPV controller is designed using 
output and state feedback theories. This way, contrary to the 
pre-mentioned controllers, there would be a controller for 
every single working point in the determined polytopic space. 
Hence, by taking online feedbacks, the PSS parameters can be 
tuned uniquely. In other words, by proceeding from one 
working point to another, the controller model also changes 
accordingly. This empowers the control system to perfectly 
perform during different conditions.This article is organized 
as follows. Introduction is presented in Section 1. In Section 
2, preliminaries are introduced. In Section 3, the LPV 
modeling of Single Machine Infinite Bus Power System with 
polytopic representation is stated. Simulation and results are 
given in Section 4. Conclusion is discussed in Section 5. 
 
2. PRELIMINARIES 

2.1. LPV systems 

The LPV model is a dynamic linear state space model. 
Although the matrices of this model are not specific, they 
depend on the system free parameter. The general form of 
such a model is as follows: 

ẋ = A(θ)x + B(θ)u
y = C(θ)x                                                                                            (1) 

where θ is an exogenous parameter that can be time 
dependent; u and y are input and output. As can be seen, this 
is a typical representation of the state space. One thing to note 
is that within a given timeframe, the parameter can cross any 
arbitrary path whose quality is generally out of the system 
control. It is also worth mentioning that there are bounds on 
magnitude and rate of variation for exogenous parameters 
[27]. 

   For all t ≥ 0, 

−µ ≤ θ(t) ≤ µ
−ρ ≤ θ̇(t) ≤ ρ

                                                                                  (2) 

2.2. Output feedback LPV controller design 

By expanding (1), the state space complete model of the LPV 
system is obtained as follows: 

G(θ):�
ẋ = A(θ)x + B1(θ)w + B2u           
z = C1(θ)x + D11(θ)w + D12(θ)u
y = C2(θ)x + D21(θ)w                    

                                      (3) 

where z is performance output, y sensed output, u control 
input, and w represents disturbance input. The state space 
model of the full-order output feedback controller is defined 
as follows: 

K(θ): �ẋk = AK(θ)xK + BK(θ)y
u = CK(θ)xK + DK(θ)y                                                        (4) 

   The closed loop system consisting of plant (P) and output 
feedback controller (K) defined in (3) and (4) is expressed as 
follows: 

H(θ): �ẋcl = Acl(θ)xcl + Bcl(θ)w
z = Ccl(θ)xcl + Dcl(θ)w                                                       (5) 

   The generilized separate form is considered as follows: 

�Acl Bcl
Ccl Dcl

� = �
A + BDKC BCK Bw + BDKDw

BKC AK BKDw
Cz + DzDKC DzCK Dzw + DzDKDw

�               (6) 

   Figure 1 presents the block diagram of the closed loop 
system in the output feedback design. 

 

 
Figure 1. Block diagram of closed loop system in output feedback 

method 
 
2.2.1. H∞ based output feedback controller 
considering Single Quadratic Lyapunov Function 
(SQLF) 

In this case, the variation rate of exogenous parameters is 
considered as desired. This method is stated through two 
approaches. The purpose to review these two perspectives is 
to figure out which one exhibits better performance and 
accuracy. 

Theorem 1. If for a positive value of γ∞, there will be a 
definite positive matrix of X, Z ∈ Sn and the matrices of the 
dependent parameter AK(θ) ∈ Rn×n, BK(θ) ∈ Rn×ny, CK(θ) ∈
Rnu×n, DK(θ) ∈ Rnu×ny, respectively, so that the LMIs (7) 
and (8) are satisfied simultaneously, then the closed loop 
system H(θ) in (5) is exponentially stable and the constraint 
(norm) H∞ of transfer function from disturbance input w to 
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performance output z in the closed loop system H(θ) becomes 
smaller than γ∞ in (9) [29]. Therefore, the state space matrices 

of controller K(θ)  can be obtained from Equation (10). 

 

ϒ∞(θ) =  

⎝

⎛
He ��A(θ)X + B2CK(θ) A(θ)B2DK(θ)C2

AK(θ) ZA(θ) + BK(θ)C2
�� ∗ �B1

(θ) + B2DK(θ)D21
ZB1(θ) + BK(θ)D21

�

[C1(θ)X + D12CK(θ) C1(θ) + D12DK(θ)C2] −γ∞Inz D11(θ) + D12DK(θ)D21
∗ ∗ −γ∞Inw ⎠

⎞ < 0                                                                      (7) 

 
   The parameters used in the above LMI are state, input, and 
output matrices, which were introduced in Section 2.2. By 
solving this LMI, the controller matrices are obtained. 

�X In
In Z� > 0                                                                                     (8) 

 
sup

w∈L2,w≠0

‖𝑧𝑧‖2
‖𝑤𝑤‖2

< γ∞                                                                          (9) 

 

⎩
⎪
⎨

⎪
⎧ AK(θ) = Z−1(ZA(θ)X + ZB2CK(θ) − AK(θ)

 −�ZB2DK(θ) − BK(θ)�C2X)Y−1                       
BK(θ) = Z−1�ZB2DK(θ) − BK(θ)�                  
CK(θ) = (CK(θ) − DK(θ)C2X)Y−1                   
DK(θ) = DK(θ)                                                       

                            (10) 

where 

Y = X − Z−1                                                                                    (11) 

Theorem 2. For any given value of λ, the closed loop system 
consisting of the system (3) and the LPV controller is stable 
by displaying the given state space in (4) if and only if there 
are constant decision matrices P1 ∈ Rn×n, P2 ∈ Rn×n, P3 ∈
Rn×n, and Y ∈ Rn×n, as well as the dependent parameters 
L1(θ) ∈ Rn×n, L2(θ) ∈ Rn×r, L3(θ) ∈ Rp×n and X(θ) ∈ Rn×n, 
S(θ) ∈ Rn×n, so that Conditions (12) and (13) are satisfied 
simultaneously; then, the closed loop system H(θ) is 
exponentially stable in (5) and H∞ norm of the transfer 
function from the disturbance input w to performance output z 
in the closed loop system H(θ) will be less than the value of 
γ∞ in (16) [30]. Therefore, the state space matrices of the 
controller K(θ)can be obtained from Equation (15): 

�
P1 P2
P2′ P3

� > 0                                                                                (12) 

 

⎝

⎜
⎜
⎜
⎛

Ṗ1 − He(A(θ)X(θ) + B2(θ)L3(θ)) ∗
P2′ − L1(θ) − A′(θ) Ṗ3 − He(YA(θ) + L2(θ)C2(θ))

−C1(θ)X(θ) − D2(θ)L3(θ) −C1(θ)
B1′ B1′ (θ)Y′ + D21

′ (θ)L2′ (θ)
X(θ) − P1 − λX′(θ)A′(θ) − λL3′ (θ)B2

′ (θ) I − P2 − λL1′ (θ)
S(θ) − P2′ − λA′(θ) Y − P3 − λA′(θ)Y′ − λC2′ (θ)L2′ (θ)

 

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
I ∗ ∗ ∗

D1
′ (θ) γ∞2 I ∗ ∗

−λX′(θ)C1′ (θ) − λL3′ (θ)D2
′ (θ) 0 λ(He�X(θ)�) ∗

−λC1′ (θ) 0 λS(θ) + λI λ(He(Y))⎠

⎟
⎟
⎞

< 0  (13) 

   The output variables and the controller state space 
representation are achieved as follows: 

⎩
⎪
⎨

⎪
⎧

AK(θ) = V(L1(θ) − YA(θ)X(θ) − YB2(θ)L3(θ) − L2(θ)C2(θ)X(θ))
 BK(θ) = V�L2(θ) − YB2(θ)�                                                                          
CK(θ) = L3(θ)                                                                                                     
DK(θ) = 0                                                                                                             
εK(θ) = V�S(θ) − YX(θ)�                                                                               

 (14) 

where 

⎩
⎨

⎧AK(θ) = AK(θ)εK−1(θ)
BK(θ) = BK(θ)             
CK(θ) = CK(θ)εK−1(θ) 
DK(θ) = DK(θ)             

                                                            (15) 

‖Hzw‖∞2 = sup
‖w(k)‖2≠0

‖z(k)‖22

‖w(k)‖22
< γ∞2                                            (16) 

   Matrix V is opted as desired, which can be an identity matrix 
with the appropriate dimension [30]. It should be noted that 
according to Theorem 2, various stabilizer controllers can be 
designed by selecting each different λ. 
 
2.2.2. H∞ based output feedback controller 
considering Parameter Dependent Lyapunov Function 
(PDLF) 

In this case, the variation rate of exogenous parameters is 
considered slow. 

Theorem 3. For any given value of λ, the closed loop system 
consisting of the system (3) and the LPV controller is stable 
with the state space represntation in (4) if and only if there are 
symmetric dependent parameter P1 ∈ Rn×n, P3 ∈ Rn×n and the 
dependent matrix parameters of L1(θ) ∈ Rn×n, L2(θ) ∈ Rn×r, 
L3(θ) ∈ Rp×n and P2 ∈ Rn×n, X(θ) ∈ Rn×n, S(θ) ∈ Rn×n and 
the constant decision matrix Y ∈ Rn×n so that the Conditions 
(17) and (18) are satisfied simultaneously. Then, the closed 
loop system H(θ) in (5) is exponentially stable and the H∞ 
norm of the transfer function from disturbance input w to 
performance output z in the close loop system H(θ) will be 
smaller than the value of γ∞ in (21). Therefore, the controller 
state space matrices K(θ) can be calculated from Equation 
(20) as follows [30]: 

�
P1(θ) P2(θ)
P2′(θ) P3(θ)� > 0                                                                   (17) 

 

⎝

⎜
⎜
⎜
⎛

Ṗ1(θ) − He(A(θ)X(θ) + B2(θ)L3(θ)) ∗
P2′(θ) − L1(θ) − A′(θ) Ṗ3(θ) − He(YA(θ) + L2(θ)C2(θ))

−C1(θ)X(θ) − D2(θ)L3(θ) −C1(θ)
B1
′ B1

′ (θ)Y′ + D21
′ (θ)L2′ (θ)

X(θ) − P1(θ) − λX′(θ)A′(θ) − λL3′ (θ)B2
′ (θ) I − P2(θ) − λL1′ (θ)

S(θ) − P2′(θ) − λA′(θ) Y − P3(θ) − λA′(θ)Y′ − λC2′ (θ)L2′ (θ)

 

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
I ∗ ∗ ∗

D1
′ (θ) γ∞2 I ∗ ∗

−λX′(θ)C1′ (θ) − λL3′ (θ)D2
′ (θ) 0 λ(He�X(θ)�) ∗

−λC1′ (θ) 0 λS(θ) + λI λ(He(Y))⎠

⎟
⎟
⎞

< 0  (18) 

   The output variables and the controller state space 
reprentation are obtained as follows: 

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
I ∗ ∗ ∗

D1
′ (θ) γ∞2 I ∗ ∗

−λX′(θ)C1′ (θ) − λL3′ (θ)D2
′ (θ) 0 λ(He�X(θ)�) ∗

−λC1′ (θ) 0 λS(θ) + λI λ(He(Y))⎠

⎟
⎟
⎞

< 0  (19) 
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where 

⎩
⎨

⎧AK(θ) = AK(θ)εK−1(θ)
BK(θ) = BK(θ)             
CK(θ) = CK(θ)εK−1(θ) 
DK(θ) = DK(θ)             

                                                            (20) 

 
‖Hzw‖∞2 = sup

‖w(k)‖2≠0

‖z(k)‖22

‖w(k)‖22
< γ∞2                                            (21) 

   Matrix V is opted as desired, which can be an identity matrix 
with the appropriate dimension [30]. It should be noted that 
according to Theorem 3, various stabilizer controllers can be 
designed by selecting each different λ. 
 
2.3. State feedback LPV controller design 

Theorem 4. If in the following optimization problem, for a 
positive ρ, there are positive and definite matrices X(θ) and 
W(θ) so that the LMI Condition in (22) for the system (3) can 
be satisfied, then the closed loop system T(θ) in (20) is stable 
and the norm of the closed loop (23) is met [31]. 

�
A(θ)X(θ) + B2W(θ) + (A(θ)X(θ) + B2W(θ))T

B1T(θ)
C1(θ)X(θ) + D12(θ)W(θ)

 

                                          
B1(θ) (C1(θ)X(θ) + D12W(θ)T

−I D11
T (θ)

D11(θ) −ρI
� < 0             (22) 

where X(θ), W(θ) > 0. 

‖Twz‖∞ < �ρ                                                                              (23) 

   Then, the state  feedback controller gain can be expressed 
through the following equation [30]: 

K(θ) = W(θ) × X−1(θ)                                                             (24) 
 

T(θ): �ẋcl = Acl(θ)xcl + Bcl(θ)w
z = Ccl(θ)xcl                  

                                            (25) 

   Figure 2 demonstrates the block diagram of the closed loop 
system in the state feedback design method. 

 

 

Figure 2. Block diagram of the closed loop system in state feedback 
method 

 
   In designing a controller using this technique, much 
progress has been made beyond stabilization (as minimum 
expectation of the controller), especially in the discussion of 
disturbances from LPV systems and minimization of inductive 
norms, improvements are significant [27]. It is to be noted that 
in most robust control topics, achieving a desirable function 
leads to minimization of inductive norm of a weighted 

function and progress in minimizing these norms provides 
progress in obtaining the desired system performance. 
 
3. PROPOSED LPV MODELING of SINGLE MACHINE 
INFINTE BUS POWER SYSTEM 

The system under study is a single machine infinite bus power 
system connecting via a transmission line. This system is 
represented by a fourth-order linear model [32]. The block 
diagram of this model is shown in Figure 3 below. 

 

 
Figure 3. Mathematical model of the single machine infinite bus 

power system 
 
   In the proposed LPV modeling, to ensure the flexibility of 
the PSS, a polytopic representation of the power system is 
employed. As is clear from Fig. 3, (k1, k2, k3, k4, k5, k6) are 
fourth-order model constants that remain dependent on the 
loading conditions of the active power (P), the reactive power 
(Q), and the external reactance of transmission line (xe). 
   Mathematical equations concerned with how to convert 
k1 … k6 to P, Q, xe were given in reference [33, 34]. In fact, 
Parameters k1 … k6 are obtained via linearized small 
perturbation relations of a single generator supplying an 
infinite bus through external impedance. In other words, the 
proposed model k1 … k6 emerges from the relationship 
between the concept of small perturbation analysis and 
synchronous generator elements [38]. The proposed working 
points (P Q xe) are per unit values which are arbitrarily 
determined from the specified intervals for each of the 
parameters. The LPV model of a single machine infinite bus 
power system can be written as follows: 

G(θ):�
ẋ = A�kp�x + Bww + Buu
z = Czx + Dzu                     
y = Cyx                                  

                                         (26) 

   z, w and y are stabilizer output, the disturbance input, and 
the measured output, respectively. Here, the velocity change 
∆ω is considered as the measured output. Disturbance input 
can be selected as a change in the mechanical torque input or a 
change in the voltage reference. The state vector x ∈ R4 is 
defined as x = [∆δ ∆ω ∆Eq ∆Efd], where ∆δ, ∆Eq, and 
∆Efd are load angle deviation, induced electromagnetic force 
deviation corresponding to the field current, and deviation in 
the generator field excitation voltage. The matrices for 
representing the state space are as follows [32]. 
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�kp� =

⎝

⎜
⎜
⎜
⎜
⎛

0 ω0 0 0
−k1

M
−D
M

−k2
M

0

−k4
Td0′

0
−1

Td0′ k3
1

Td0′

−KEk5
TE

0
−KEk6

TE
−1
TE ⎠

⎟
⎟
⎟
⎟
⎞

, Bu =

⎝

⎜
⎛

0
0
0

KE

TE⎠

⎟
⎞

 

Bw = �

0
1
M
0
0

� , Cy = (0 1 1 1)                                                     (27) 

where TE, KE, Td0′  and M are exciter time constant, exciter 
gain, open circuit field time constant, and inertia coeficient, 
respectively. 
   Note: C1 = Cz and C2 = Cy may be selected as Cz = Cy and 
also Dz = 0. Doing this, the H∞ norm of the closed loop 
system is reduced from the input w to z as well as the effect of 
external disturbance on the output performance. Based on the 
analysis performed in [33], k4 can be written as (xd − xd′ )k2, 
in which xd and xd′  are the d-axis synchronous reactance and 
the d-axis transient reactance, respectively. In addition, it can 
be written in the matrix (27): 

k3i = 1
k3

                                                                                          (28) 

   Therefore, system matrices can be expressed as follows: 

�kp� =

⎝

⎜
⎜
⎜
⎜
⎛

0 ω0 0 0
−k1

M
0

−k2
M

0

−(xd − xd′ )k2
Td0′

0
−k3i
Td0′

1
Td0′

−KEk5
TE

0
−KEk6

TE
1
TE ⎠

⎟
⎟
⎟
⎟
⎞

, Bu =

⎝

⎜
⎛

0
0
0

KE

TE⎠

⎟
⎞

 

Bw = �

0
1
M
0
0

� , Cy = (0 1 0 0)                                                     (29) 

A�kp� = A0 + k1A1 + k2A2 + k3iA3 + k5A5 + k6A6        (30) 

   In Equation (30), the system matrix A(kp) is written as an 
expression and separated by parameters and constant matrices 
A0, A1, A2, A3, A5 and A6where each parameter changes 
within a certain range: 

⎩
⎪
⎨

⎪
⎧ k1 ∈ [k1−, k1+]

k2 ∈ [k2−, k2+]
k3i ∈ [k3i− , k3i+ ]
k5 ∈ [k5−, k5+]
k6 ∈ [k6−, k6+]

 

under different loading conditions. 
   ki−(ki+) represent the boundries of the ki parameter 
corresponding to the P ∈ [P−, P+], Q ∈ [Q−, Q+]and xe ∈
[xe−, xe+]  values. The affine parameter-dependent model in 
(30) can be converted to a olytopic model as (32). The 
parametric vector k = [k1 k2 k3i k5 k6] creates a 32-
corner polytope whose corners are as follows: 

⎩
⎪
⎨

⎪
⎧kcor32 = [k1− k2+ k3i+ k5+ k6+]

kcor32 = [k1+ k2− k3i+ k5+ k6+]
.
.
.

kcor32 = [k1− k2− k3i− k5− k6−]

                                          (31) 

For all P ∈ [P−, P+], Q ∈ [Q−, Q+] and xe ∈ [xe−, xe+] values, 
the system matrix can be obtained as: 

A�kp� = A(k) ∈ S ≔ Co{A1, A2, … , A32}: 

= �∑ aiAi: ai ≥ 0,∑ ai = 1i=32
i=1

i=32
i=1 �                                        (32) 

where A1 = A(kcor1), A2 = A(kcor2), … . , A32 = A(kcor32). 
   In this study, the design of PSS using the output feedback 
and the state feedback method via LPV approach for optimal 
placement of poles in accordance with the working conditions 
P ∈ [P−, P+], Q ∈ [Q−, Q+] and xe ∈ [xe−, xe+] is presented so 
that the H∞norm of the closed loop system can be minimized. 
Furthermore, the PSS transfer function is strictly proper and 
its order is equal to the system order (full order controller). 
The state space representation of PSS controller and closed 
loop system are shown in accordance with (4) and (5) as 
follows: 

K�kp�: �
ẋK = AK�kp�xK + BK�kp�y
u = CK�kp�xK + DK�kp�y    

                                     (33) 

   The closed loop system consists of a plant (29) and a 
controller (33), as obtained below: 

T�kp�: �
ẋcl = Acl�kp�xcl + Bcl�kp�w
z = Ccl�kp�xcl + Dcl�kp�w    

                                    (34) 

where 

�Acl Bcl
Ccl Dcl

� = �
A + BDKC BCK Bw + BDKDw

BKC AK BKDw
Cz + DzDKC DzCK Dzw + DzDKDw

�             (35) 

 
4. SIMULATION AND RESULTS 

In this section, by employing the mentioned Theorems and 
Equations, simulations are done according to the defined 
scenarios. Optimization problems are solved using the 
YALMIP [35] and ROLMIP [36] toolboxes runnig in 
MATLAB software. SeDuMi and SPDT3 are used as LMI 
solvers. 
 
4.1. Output feedback structure 

Theorems 1 and 2 of Section 2.2.1. are used for system (29) 
with a 32-corner polytope corresponding to the following 
parameters: 

P ∈ [P−, P+], Q ∈ [Q−, Q+]and xe ∈ [xe−, xe+] 

⎩
⎪
⎨

⎪
⎧ k1 ∈ [k1−, k1+]

k2 ∈ [k2−, k2+]
k3i ∈ [k3i− , k3i+ ]
k5 ∈ [k5−, k5+]
k6 ∈ [k6−, k6+]

 

   Finally, the control parameters of the output feedback design 
are obtained using Equation (10) and (15). 
   Considering the single machine infinite bus power system 
and the 32 corners obtained from its polytopic representation, 
the LPV stabilizer design is addressed. In the simulations 
performed, the range of changes in machine parameters is 
considered as follows [32]: 
P ∈ [0.2 1]  p. u       
Q ∈ [−0.2 0.5]  p. u 
xe ∈ [0.4 0.8]  p. u   

                                                                    (36) 
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The parameters k1 to k6 will also change as shown in 
Appendix B, in the specific period [ki−, ki+] as follows: 

⎩
⎪
⎨

⎪
⎧

[k1− k1+] = [0.67027 1.7130]       
[k2− k2+] = [0.0377 1.3255]         
[k3i− k3i+ ] = [2.14285 2.77778]   
[k5− k5+] = [−0.13991 0.16554] 
[k6− k6+] = [0.3810 0.82008]       

                                          (37) 

   To investigate the effectiveness of the proposed method, the 
simulation results of the stabilizer designed by Theorems 1 
and 2 in Section 2.2.1 and a classical stabilizer [37] as well as 
a H∞ robust stabilizer [32] are compared. 
   H∞ Robust output feedback PSS 

76.74×(1+0.287s)(1+0.648s)(1+0.0126s)
(1+0.0205s)(1+0.0324s)(1×10−5s2+2.35×10−3s+1)

                            (38) 
 
Cpss = KsTws

1+Tws
× (1+T1s)(1+T3s)

(1+T2s)(1+T4s)
= 14×10s

1+10s
× (0.08s2+0.65s+1)

(0.0052s2+0.14s+1)
          (39) 

   Ks is the PSS gain, Tw is the Washout time constant, and 
T1 … T4 are the time constants of the lead compensators. 

Here are the simulation results of a sudden change in the input 
mechanical torque, which indicates a short circuit at a 
particular moment and its elimination after a certain period of 
time that occurs in three modes of operation. 

 
Table 1. Summary of the considered operating conditions 

Values Operating conditions 

P = 1, Q = 0.2, xe = 0.4 1st: Lag power factor 

P = 1, Q = −0.2, xe = 0.8 2nd: Lead power factor 

P = 0.2, Q = 0.5, xe = 0.4 3rd: Lag power factor 

P = 0.3, Q = −0.1, xe = 0.6 4th: Lead power factor 

 
   In this case, first, using Theorems 1 and 2 in Section 2.2.1, 
the Liapanov function is fixed and as a result, the dynamics of 
the system are considered to be relatively fast. The simulation 
results are obtained as follows (Figure4 - Figure14). 

 

 

Figure 4. Comparison of LPV PSS, Robust PSS, and CPSS for the first working mode and a sudden change t = 2 s in the input mechanical torque 
 
 

 
Figure 5. Comparison of LPV PSS, Robust PSS, and CPSS for the second working mode and a sudden change t = 2 s in the input mechanical 

torque 
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Figure 6. Comparison of LPV PSS, Robust PSS, and CPSS for the third working mode and a sudden change t = 2 s in the input mechanical torque 

 
 

 
Figure 7. Comparison of LPV PSS, Robust PSS, and CPSS for the fourth working mode and a sudden change t = 2 s in the input mechanical 

torque 
 
Figures 4-7 show comparisons between LPV controllers from 
Theories 1 and 2 as well as between the robust PSS and the 
classic PSS at the mentioned working points with changes in 
mechanical torque at t = 2 s. It can be observed that Theories 1 
and 2 represent better performance in speed and load angle 

tracking after applying the disturbance and exhibit minmum 
deviation from the reference values. It should also be noted 
that the amplitude of overshoots and undershoots in the LPV 
controllers is much more limited than other control theorems, 
which is more desirable. 

 

 
Figure 8. Comparison of LPV PSS, Robust PSS, and CPSS for the first working mode upon applying noise in the input mechanical torque 
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Figure 9. Comparison of LPV PSS, Robust PSS, and CPSS for the second working mode upon applying noise in the input mechanical torque 

 
 

 
Figure 10. Comparison of LPV PSS, Robust PSS, and CPSS for the third working mode upon applying noise in the input mechanical torque 

 
The variations in load angle, velocity, and mechanical torque 
in the presence of white noise are shown in Figures 8-10 for 
three operating points. As illustrated earlier, the proposed 
LPV controller senses much less perturbations than robust 
PSS and CPSS. In addition, it is crystal clear that the 
application of noise in robust and classic PSS creates 
instability for some operating points and makes ∆δ and ∆𝜔𝜔 

oscillate around the reference value. This verifes the 
incredible performance of the proposed LPV controller. 
   Now, using Theorem 3 in Section 2.2.2, the Liapanov 
function is considered as the dependent parameter and the 
system dynamics is relatively slow. The simulation results are 
shown in Figures 11-14. 

 

 
Figure 11. Comparison of LPV PSS, robust PSS, and CPSS for the first working mode and a sudden change t = 2 s in the input mechanical torque 
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Figure 12. Comparison of LPV PSS, robust PSS, and CPSS for the second working mode and a sudden change t = 2 s in the input mechanical 

torque 
 
 

 
Figure 13. Comparison of LPV PSS, robust PSS, and CPSS for the third working mode and a sudden change t = 2 s in the input mechanical torque 

 
 

 
Figure 14. Comparison of LPV PSS, Robust PSS, and CPSS for the fourth working mode and a sudden change t = 2 s in the input mechanical 

torque 
 
According to Figures 11 to 14, the performance of the LPV 
controller designed  based on Theorem 3 with the proposed 
polytopic approach by assuming that the variation rate of 
exogenous parameters is slow (slow dynamic) is not as 
favorable as it should be and it is less valuable than robust and 

classic controllers. If Figures 4 to 10 are taken into account, it 
can be seen that the simulation results based on Theorems 1 
and 2 are much more effective than robust and classic 
methods. 
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Table 2. Norm comparison in output feedback method related to Theorems 1, 2, and 3 

PSS designing method Largest closed-loop norm (𝛄𝛄∞) Iteration l 

Robust 0.023 25 ----- 

LPV (Theorem 1) (0.236,0.234,0.228,0.205) (1,2,3,4) (0.01,0.001,0.00005,0.00001) 

LPV (Theorem 2) (4.18,2.38,1.115,0.797) (1,2,3,4) (0.01,0.005,0.0005,0.00005) 

LPV (Theorem 3) 0.267 1 ----- 

 
   By comparing the best design methods (based on Theorems 
1 and 2-Liapanov's fixed function) in Section (2.2.1) and since 
these controllers are proper and strictly proper respectively, it 
can be concluded that the controller originated from Theorem 
1 has a better performance than Theorem 2. 
 
4.2. State feedback structure 

Here, Theorem 4 in Section (2.3) for System (29) with 32-
corner polytopes corresponding to the parameters: 

P ∈ [P−, P+], Q ∈ [Q−, Q+]and xe ∈ [xe−, xe+] 

⎩
⎪
⎨

⎪
⎧ k1 ∈ [k1−, k1+]

k2 ∈ [k2−, k2+]
k3i ∈ [k3i− , k3i+ ]
k5 ∈ [k5−, k5+]
k6 ∈ [k6−, k6+]

 

are employed and the state feedback controller gain is 
obtained. 
   The following are the simulation results of the stabilizer 
tuned by the state feedback technique according to Theorem 4 
in Section (2.3.) and the output feedback technique in 
Theorem 1 in Section (2.2.1.). Figures 17-20 demonestrate the 
simulation results of the comparison of LPV PSS performance 
in output feedback and state feedback approaches. 

 

 
Figure 15. Comparison of LPV PSS performance in output feedback and state feedback methods for the first working mode and a sudden change  

t = 2 s in input mechanical torque 
 
 

 
Figure 16. Comparison of LPV PSS performance in output feedback and state feedback methods for the second working mode and a sudden 

change t = 2 s in input mechanical torque 
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Figure 17. Comparison of LPV PSS performance in output feedback and state feedback methods for the third working mode and a sudden change 

t = 2 s in input mechanical torque 
 
 

 
Figure 18. Comparison of LPV PSS performance in output feedback and state feedback methods for the fourth working mode and a sudden 

change t = 2 s in input mechanical torque 
 
According to Figures 15-18, output feedback design works 
more presciely than state feedback design to damp the 
disturbances and minimize the errors. The range of overshoots 

and undershoots indicates that the proposed LPV PSS 
designed by output feedback theory is less affected by 
disturbances. 

 

 
Figure 19. Comparison of LPV PSS performance in output feedback and state feedback methods for the first working mode upon applying noise 

in the input mechanical torque 
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Figure 20. Comparison of LPV PSS performance in output feedback and state feedback methods for the second working mode upon applying 

noise in the input mechanical torque 
 
 

 
Figure 21. Comparison of LPV PSS performance in output feedback and state feedback methods for the third working mode upon applying noise 

in the input mechanical torque 
 
 

 
Figure 22. Comparison of LPV PSS performance in output feedback and state feedback methods for the fourth working mode upon applying noise 

in the input mechanical torque 
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According to the results derived from Figures 19-22, while 
noise is applied to the input mechanical torque, the state 
feedback control system performs weaker than the output 
feedback one. For a fair comparison, maximum error rates and 
for two scenarios and four operating points are denoted, as 
given in Figure 23-26. 

 

 
Figure 23. Maximum error rate-output feedback approach tested at 

four working points. Scenario A: Sudden change in input mechanical 
torque. Scenario B: Applying noise to input mechanical torque 

 
 

 
Figure 24. Maximum error rate-state feedback approach tested at 4 

working points. Scenario A: Sudden change in input mechanical 
torque. Scenario B: Applying noise to input mechanical torque 

 
 

 
Figure 25. Maximum error rate-output feedback approach tested at 4 

working points. Scenario A: Sudden change in input mechanical 
torque. Scenario B: Applying noise to input mechanical torque 

 
…As can be concluded from the bar charts above, the output 
feedback theory while applying Scenario A for Δδ has an 

accurate performance to track reference value and the 
maximum error rate is 1.9. On the other hand, based on the 
state feedback theory, the maximum error rate is 4.5, which is 
much higher than the output feedback approach . Similarly, the 
rotor angle maximum error rate for the output and state 
feedback theories are 1 and 1.5, respectively. 

 

 
Figure 26. Maximum error rate- state feedback approach tested in 4 

working points. Scenario A: Sudden change in input mechanical 
torque. Scenario B: Applying noise to input mechanical torque 

 
   Considering ∆ω graphs, it is evident that the maximum error 
rate for both state feedback and output feedback theories is 
almost the same between 0.02 and 0.03 p.u. Overall, it can be 
said that the PSS implemented via output feedback theory 
outweighs the state feedback approach. 

 
Table 3. Norm comparison in output feedback and state feedback 

methods for Theorems 1 and 4 

Largest closed-loop norm Desired theorems 

γ∞=0.267 Theorem 1 (Output feedback) 

γ∞=0.063 Theorem 4 (State feedback) 

 
   In this paper, Matlab Software was used for the aim of 
simulation. The convergence time depends the order of 
generator model and on the polytope vertices. The higher the 
order of the system, the more complex the controller design 
and the longer the convergence time. 
   The proposed strategy flowchart is finally presented here for 
clarifying the overall methodolgy. 

 

 
 

Figure 27. Overall proposed control strategy flowchart 
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5. CONCLUSIONS 

Low frequency oscillations in interconnected power systems 
are considered as the main challenge. This paper suggests a 
control strategy based on LPV method to obtain an effective 
power system stabilizer rejecting noises and disturbances. 
This system was examined by applying different inputs as 
well as different operating conditions of the proposed 
stabilizing performance. Also, the effectiveness of the 
proposed controller design was compared to the robust and 
classic design considering the uncertainties of the model and 
changes in the working conditions. Polytopic representation 
and LMI optimization are employed to design output feedback 
and state feedback controllers in order to create a power 
system stabilizer. Upon comparing the proposed methods and 
controllers, it was found that PSS designed via LPV method 
and based on output feedback theory provided better results. 
In addition, good stability and damping over the whole range 
of system conditions are guaranteed. This designed PSS can 
be utilized in intertwined power systems including renewable 
units to suppress the oscillations. 
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NOMENCLATURE 

P Active power (w) 
Q Reactive power (var) 
Xe External reactance of transmission line (Ω) 
k1 … k6 PSS fourth-order model constants 
u Stabilizer output 
w Disturbance input 
y Measured output 
∆ω Velocity deviation (rad/s) 
∆δ Load angle deviation 
∆Eq Electromagnetic force deviation (kg. m/s2) 
∆Efd Generator field excitation voltage deviation (v) 
TE Exciter time constant (s) 
KE Exciter gain 
 Td0′  Open circuit field time constant (s) 
M Inertia constant (s) 
D Damping coefficient 
xd d-axis transient reactance (Ω) 
xq q-axis transient reactance (Ω) 
xd′  d-axis synchronous reactance (Ω) 
Ks PSS gain 
Tw Washout time constant (s) 
T1 … T4 Time constant of lead compensator (s) 

 
APPENDICES 

Appendix A: System parameters 

Parameter Value 
V 1 p.u 
ω0 314 rpm 
M 10 s 
xd′  0.32 p.u 
xd 1.6 p.u 
xq 1.55 p.u 
KE 25 
TE 0.05 s 
Td0′  6 s 
D 0.05 p.u 

Appendix B: Calculation of k1 to k6 

C1 =
V2

xe + xq
, C3 = C1

xq − xd′

xe + xd′
, C4 =

V
xe + xd′

 

C5 = V
xd − xd′

xe + xd′
, C6 = C1

xq(xq − xd′ )
xe + xd′

, C7 =
xe

xe + xd′
 

k1 = C3
P

P2 + (Q + C1)2
+ Q + C1 

k2 = C4
P2

�P2 + (Q + C1)2
, k3 =

xe + xd′

xd + xd′
 

k4 = C5
P2

�P2 + (Q + C1)2
 

k5 = C4xe
P

V2 + Qxe
�C6

C1 + Q
P2 + (C1 + Q)2

− xd′ � 

k6 = C7
�P2 + (Q + C1)2

V2 + Qxe
�xe +

C1xq(C1 + xq)
P2 + (C1 + Q)2

� 
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