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A B S T R A C T  
 

Distributed flexible ac transmission system (D-FACTS) is a light-weight version of FACTS, which it is easily 
allocated and costs less than flexible ac transmission system (FACTS) devices. They have potential benefits to 
improve the system stability and improvement in power quality in microgrid (MG). The integration of 
distributed energy sources, loads, electrical energy storage devices, and electronic power devices, as well as 
the operation of microgrids in connected or island-connected modes has expanded their use. It is a small main 
grid that can generate electricity when disconnected from the main network. In addition, microgrids reduce the 
high investment costs required to upgrade the network. The application of DFACTS devices for improving the 
microgrid operation has been investigated by some researches. This paper provides a review of impact and role 
of various DFACTS devices in the function of microgrids, which has been reported in recent years in various 
pieces of the literature. DFACTS devices with their properties are described. Finally, a useful reference and 
framework for the study is provided for future expansion of DFACTS devices so as to improve the 
performance of the microgrid. 
 

https://doi.org/10.30501/jree.2022.321435.1305 

1. INTRODUCTION1 

Power systems are generally centralized, consisting of large 
power plants, and power is transmitted to consumption 
through long-distance transmission lines [1-10]. The demand 
for clean and free-of-contamination electric power is 
increasing day by day with the ongoing developments and 
advances [11-14]. A microgrid (MG) is a controllable local 
electrical network that can work independently or 
collaboratively with other small networks [15, 16]. It is a 
complex non-linear system with inter-coupling of 
thermodynamics, chemical energy, and electrodynamics [17-
22]. 
   Many types of renewable energy resources are utilized as 
power generators in MGs [23-27]. Thus, an MG is able to 
reduce the loss of transmission to improve the efficiency of 
grids and resolve energy crisis [28, 29]. It must, also, be 
capable to power flow control and supervise energy storage 
[30, 31]. The ability to export to or import energy from the 
main network is a must [32-35]. 
   An MG system consists of different power quality issues 
[36-38]. Power quality problems can also be very costly for 
both utility and the customer [39]. Frequency changes, voltage 
fluctuations, voltage distortions, flicker, and voltage 
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disturbances reduce the quality of energy supplied to 
consumers in an MG [40-43]. Figure 1 shows the 
classification of power quality problems and their impacts on 
grid-connected MG systems [44, 45]. 

 

 
Figure 1. Power quality of MG system 
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1.1. Short summary of FACTS devices 

FACTS devices are used in AC transmission networks to 
increase power transmission capability, stability, and control 
of networks [46, 47]. These devices are connected to the 
transmission system in terms of connection to four categories, 
according to Figure 2. The important advantages of FACTS 
controllers include the following: the ability to increase power 
transmission capability, restrict electricity to designated 
routes, improve transient and dynamic stability, reduce 
damping power system fluctuations, and adjust system voltage 
and flexible system operation with simple controls [48-60]. 
 
1.2. Importance of DFACTS devices 

DFACTS device is used in distribution system, while FACTS 
device is used in transmission systems [61-67]. These devices 
are designed and installed to improve power quality anywhere 
in the power distribution system [68, 69]. DFACTS are used 
to improve the system stability and power quality 
improvement in MGs [70, 71]. 
   Figure 3 shows a reduction in the MG power losses in the 
islanding mode due to the use of the DFACTS. The 
improvement in power factor values is shown in Figure 4. As 
can be seen, the power factor in heavy load has increased to 
0.8 and at light load, the power factor has increased to unity 
[72]. 
 
1.3. Innovation and contributions 

There are several papers results about DFACTS from various 
aspects of application in MG. This paper provides a 
comprehensive review of various DFACTS devices for 
performance improvement of MG that have been reported in 

the literature during recent years. The significance and the 
novelty of the work is as follows: 

- Use of this paper review as an initial platform for research 
work on microgrids in industry. 
- Review of DFACTS devices used by microgrids for 
enhancing power quality. 
- Comprehensive review of DFACTS types. 
- Review of the available types for application of different 
compensators. 
 
1.4. Paper organization and structure 

In Section 1, the whole subject of the study is mentioned. The 
structure and operation of an MG are investigated in Section 
2. A classification of the most relevant MGs can be also found 
in this section. In Section 3, a brief overview of the 
application of DFACTS in power system is made, where the 
features and structure are stated. The effect of DFACTS on 
behavior of the MG is discussed in Section 4. Finally, the 
conclusion of the research is presented in Section 5. 
 
2. CHARACTERISTICS OPERATING OF MICROGRID 

MG is a controllable and independent power system, which is 
a localized group of distributed energy resources, loads, 
energy storage devices, inverters, and protection devices [73, 
74]. Figure 5 depicts the typical structure of an MG. The MG 
connects to the network in a PCC whose aim is to maintain the 
same voltage as the main grid. It is characterized by a variety 
of parameters such as mode of operation, distribution system, 
source, scenario, and sizes, as shown in Figure 6 [75]. 

 

 
Figure 2. Classification of facade devices based on the type of connection 
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Figure 3. MG power loss profile 

 
 

 
Figure 4. Power factor profile at the utility grid bus 

 
 

 
Figure 5. Microgrid architecture 



Gh. Shahgholian / JREE:  Vol. 10, No. 1, (Winter 2023)   43-58 
 

46 

 
Figure 6. Microgrid types 

 
This classification has been performed based on the studies 
found in the literature. MGs are classified based on location to 
remote MGs and urban MGs. MGs are divided into different 
types and classes in terms of their controlling topology [76]. 
With regard to power, the MG is classified as an ac power 
system [77], a dc power system [78, 79], or a hybrid system 
[80, 81] which reveal their advantages and disadvantages 
upon its application. 
   The operating modes for MGs are recognized and defined as 
follows: grid-connected mode, transition to island mode, 
island mode, and reconnection mode [82, 83]. Therefore, in 
the event of reduced power quality or network faults, 
microgrid increases the reliability of energy sources [84]. In 
the grid-connected mode, the power flow of MGs is 
bidirectional. While in the islanded mode, the power supply of 
MGs must meet the demand of load [85, 86]. Depending on 
their topology, MG control can be divided into three classes: 
simple (or virtual prime mover), master control (or physical 
prime mover), and peer-to-peer control (or distributed 
control). 
 
3. OVERVIEW OF DFACTS DEVICES 

The devices for improving the quality of power and reliability 
of supply can be divided into three categories: (a) passive 
mitigation devices such as transformers and rotating machine; 
(b) DC system; and (c) power-based electronics. DFACTS 

devices such as Unified Power Quality Compensator (UPQC) 
[87, 88], Distributed Power Flow Controller (DPFC) [89], 
Dynamic Voltage Restorer (DVR) [90-91], DSSC [92, 93], 
and DSTATCOM [94-96] have many potential benefits in a 
power system. They are applied to low-voltage distribution 
systems. 
 
3.1. Introduction of DFACTS devices 

DFACTS devices are divided into four categories based on the 
type of connection: series, shunt, series-shunt, and series-
series. This section briefly explains the DFATCS types. 
 
3.1.1. Unified power quality conditioner 

UPQC is a major custom power device. It is a multifunction 
power conditioner [97, 98]. The UPQC power circuit consists 
of a common dc-link capacitor and two filters including a 
shunt active power filter and a series active power filter. One 
of the methods to compensate for various disturbances in the 
power system such as voltage disturbances in the power 
supply, correcting voltage fluctuations, and preventing the 
harmonic flow of load is the use of UPQC [99]. Schematic 
structure of the UPQC is shown in Figure 7. Several 
applications of UPQC in the power systems are listed in Table 
1. 

 
Table 1. Various applications of UPQC in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[100] Improvement of 
power quality 

Adaptive frequency 
passiveness control 

The application of UPQC to improve power quality 
in the manufacturing industry indicates that the 

adaptive frequency passiveness control method is 
used. 

[101] Effect mitigating of 
supply voltage sags 

Power injection 
method 

A UPQC-Q control structure is provided so as to 
achieve the minimum active power injection. Also, 
this method takes into consideration the limitations 
of the phase difference during voltage sag events. 

[102] Power quality 
enhancement 

Adaptive JAYA 
algorithm 

An online tuning method is adopted for PI control 
gains in PV-UPQC shunt and serial converter 

controllers. The JAYA adaptive algorithm has two 
independent objective functions. 
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Figure 7. UPQC system configuration 

 
3.1.2. Dynamic voltage restorer 

The two main parts of DVR are the power circuit and control 
circuit. It is a series compensation device composed of an 
energy storage system with a dc link, a filter circuit, an 
inverter, and a series voltage injection transformer [103, 104]. 
A schematic diagram of the DVR is shown in Figure 8. 
   The coupling transformer is connected in series to the grid 
to correct the voltage disturbances during faulty grid 
conditions [105]. Several DVR applications in power systems 
are listed in Table 2. 

 
Figure 8. Schematic structure of the DVR compensator 

 
Table 2. Various applications of DVR in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[106] 
Voltage droop 

compensation and 
automatic power recovery 

Adaptive control 

An improved control structure is proposed for sensitive 
loads to improve voltage quality using DVR during the 
voltage compensation stage and maximum active power 

absorption during the energy self-recovery stage. 

[107] Enhanced voltage sag 
compensation 

Compensation of phase 
jump with minimum 

active power injection 

An increased compensation method is proposed that 
reduces the load voltage phase jump while improving 

the overall bending compensation time. 

[108] Balanced voltage sag 
compensation 

Discrete-time domain 
control 

The proposed control strategy is implemented with two 
nested regulators in the synchronous reference frame. 

[109] Fault ride improve Hybrid genetic 
algorithm optimized 

Custom DVR enhances the regulation of network 
voltage in unusual conditions. 

 
3.1.3. Distributed static series compensator 

DSSC is a low power device that can act as a variable 
impedance [110]. It is connected in series providing active 
power flow control through transmission line [111]. DSSC 
structure is similar to Static Synchronous Series Compensator 
(SSSC) differentiating in power rating, but has the same 
capability as the SSSC. The distributed concept of the DSSC 
provides much lower cost and higher reliability than the SSSC 
[112, 113]. DSSC basic structure is shown in Figure 9. 
Several applications of DSSC in power systems are listed in 
Table 3. 

 
Figure 9. Schematic structure of the DSSC 

 
Table 3. Various applications of DSSC in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[114] 
Loadability and 

reliability in power 
system 

Flow model of DC 
load  

The load flow model is used to find the optimal location for 
the DSSC and linear integer linear programming is used to 

solve the optimization problem. 

[115] Active power flow 
control 

Line reactance 
changing 

To achieve the desired flow controlled performance, the 
distribution of DSSC modules is used to operate by 

effectively changing the interface reaction. 

[116] Control of power 
flow in grid 

Change the 
impedance of the line 

DFACTS is proposed as an alternative approach to realize 
cost-effective energy flow control. 

 

http://www.powerqualityworld.com/2012/05/sssc-static-synchronous-series.html
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3.1.4. Distributed power flow controller 

DPFC can be installed directly on the conductor. Using the 
control center located in the control post, the DPFC installed 
on the lines can be controlled. A DPFC controlled for 
operation is reactive voltage injection mode and series reactor 
mode. DPFC is derived from UPFC, which includes 
adjustment of line impedance, transmission angle, and bus 

voltage [117]. The converter inside the DPFC is independent 
and the required DC voltage is supplied by its own DC 
capacitor. 
   Figure 10 shows the schematic diagram of the DPFC. The 
DPFC consists of one shunt converter and several series 
converters [118]. Several applications of DPFC in power 
systems are listed in Table 4. 

 

 
Figure 10. Schematic structure of the DPFC 

 
 

Table 4. Various applications of DPFC in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[119] Improve power 
system stability 

Optimization 
problem using PSO 

An oscillation damping controller is designed for DPFC to damp 
LFOs, in which the optimal design problem is considered as an 

optimization problem. 

[120] Energy balance Multi-objective 
coordinated control 

A multi-objective coordinated control equation is proposed in which 
the equation minimizes the variance between the actual value of the 

control target and its given value to ensure that the DC capacitor 
voltage, both in the series and shunt side, is stable at target value. 

[121] 
Increase system 

loading 
capability 

Linear 
programming of 
complex integers 

An optimal DPFC configuration method is proposed to increase 
system load according to economic performance, in which DPFC 
investment and system loading behavior are analyzed and optimal 

solutions are used. 
 
3.1.5. Distribution static synchronous compensator 

DSTATCOM is a voltage source converter and is used as a 
shunt connection. This compensator is used to compensate for 
the bus voltage in distribution networks and it improves power 
factor and reactive power control [122, 123]. 
   It works through exchanging the reactive power between the 
DSTATCOM and the power system [124]. DSTATCOM 
basic structure is shown in Figure 11. Several applications of 
DSTATCOM in power systems are listed in Table 5. 

 

 
Figure 11. Schematic structure of the DSTATCOM 

3.1.6. Solid-state circuit breaker 

SSCB is a semiconductor-based protection device with no 
moving parts to cut off the fault current [129, 130]. Solid state 
circuit breakers are divided into two groups: hybrid circuit 
breaker and all SSCBs [131, 132]. The SSCBs solve the 
problem of slow reactive devices [133]. It is suitable for 
voltage systems at both high and low levels. A typical of the 
solid-state DC circuit breaker is shown in Figure 12 [134, 
135]. Several applications of SSCB in power systems are 
listed in Table 6. 

 

 
Figure 12. Schematic structure of the SSCB 
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Table 5. Various applications of DSTATCOM in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[125] Loss reduction and 
voltage profile Direct load flow 

A DG is placed optimally for reduction of losses in the 
network and under voltage at several buses is solved by 

the optimal placement of DSTATCOM. 

[126] 
Improve dynamic 

response and power 
quality 

PSO-tuned PI controller 
The PI controller set to PSO works better than the 
traditional PI controller set to the Ziegler-Nichols 

technique. 

[127] Power quality 
enhancement 

Composite observer 
based control technique 

This method is used to reduce reactive power, balance 
the load, and reduce harmonic distortion. 

[128] DSTATCOM nonlinear 
controller Hybrid optimization 

The basis of nonlinear control is partial feedback 
linearization, which is used to better regulate the DC 

capacitor voltage in DSTATCOM. 
 
 

Table 6. Various applications of SSCB in the power system 

Ref. Subject Suggested method Contributions (Cause of use in power system) 

[136] Protection against short 
circuit Switches design Implemention of a simplified prototype of SSCB as a fault 

current limiter with DG is studied. 

[137] DC fault protection for 
modular multi-level 

Advanced planning 
stage 

The concept of protection for SSC and DC high voltage 
systems based on the overhead transmission is proposed and 

analysed. 

[138] 
Systematic evaluation of 

solid-state devices 
Hybrid circuit 

breakers 

Due to the simplicity of the control circuit and the switching 
resistance due to dv/dt, voltage controlled devices are 

selected. 
 
3.2. Summary of the review study of DFACTS 

Some of the available review studies on application of the 
DFACTS in power system are mentioned in Table 7. 

 
Table 7. A review run on studies on different aspects of DFACTS 

Ref. Specifications (Summary of the review studies) 

[139] 
The impact of installing DFACTS devices by studying 
the linear sensitivities of power system quantities has 

been investigated. 

[140] 

Various conventional and adaptive algorithms used to 
control DFACTS devices for improvement of power 

quality in utility grids with renewable energy 
penetration are reviewed and discussed. 

[141] 

A survey on the optimal allocation of DSTATCOM in 
distribution networks is presented. Reducing power loss, 

reducing voltage deviation, improving reliability 
standards, and increasing voltage stability are some of 

the goals of using DFACTS. 

[142] 
For DVR with flywheel energy storage, input–output 

linearization ac voltage controller theory and 
performance are presented. 

[143] 

Various challenges related to SSCB design from the 
perspective of general applications and comparison of 

several SSB technologies based on key criteria are 
discussed. 

 
4. LITERATURE REVIEW 

Several researchers have studied the effect of DFACTS 
devices on the improvement the performance of MGs [144, 
145]. In this section, upon reviewing the research, the 
application of each device in improving the performance of 
the MG is examined. 

4.1. Improved MG performance 

In this section, various indicators assocaited with MG 
performance improvement by DFACTS devices are 
mentioned. 
 
4.1.1. Grid voltage disturbances 

Grid voltage disturbances are the most common power quality 
problems in industrial distribution systems. The voltage 
disturbances of the network include voltage sags, swells, 
flicker, and harmonics. 
   At the moment of voltage droop, the rms value of the line 
voltage decreases, which lasts for a period of one half cycle of 
voltage up to 500 ms. 
   The objective of [146] is to investigate reactive power 
compensation in MG for voltage sag/swell mitigation using 
UPQC such that the MG is developed with two DGs units, a 
PV-cell and a wind generator, to give the output voltage equal 
to a typical 3-phase 4-wire distribution system. 
   To manage power quality in an MG, a DVR compensation 
strategy based on three basic strategies was presented in [147] 
and its method protects against sensitive voltage droops 
against main voltage droop with phase jump. 
   A DC microgrid-integrated DVR system to mitigate the grid 
voltage sag and swell was presented in [148]; compared to the 
conventional DVR designated by pure energy storage, the DC 
microgrid extends the DVR performance. 
   The utilization of the custom power device specifically 
DVR in mitigating the problem of voltage sags and swells 
occurring in MG was proposed in [149], in which the MG was 
modeled and simulated under different loading conditions 
causing power quality problems. Moreover, for the 
performance of DVR in overcoming the problems, reactive 
power compensation was analyzed. 
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The voltage profiles of the IEEE 69-buses without 
DSTACOM and the multiple DSTATCOM effect under 
various load conditions are shown in Figures 13 and 14 [150]. 

 

 
Figure 13. Voltage profile in system without DSTATCOM for 

different load variations 
 
 

 
Figure 14. Voltage profile in system equipped with DSTATCOM for 

different load variations 
 
   The x-axis and the y-axis show voltage in perunit and bus 
number, respectively. As can be seen, the specifications of the 
distribution system have been improved using DSTATCOM. 
Figure 15 shows the reactive current variations through the 
distribution transformers of MG system with three DGs due to 
a fault at one of the busbars. Accordingly, the operation of 
DFACTS in MG1 and MG2 reduced the reactive current 
flowing out of MG3, which does not have a DFACTS 
connected mode. 

 
Figure 15. Reactive current variations with and without 

DSTATCOM 
 
4.1.2. Improvement of Low-Voltage Ride-Through 
Capability 

In a high-penetration MG under some minor or temporary 
faults, improved LVRT capability can help strengthen force 
support and reduce system instability [151]. The LVRT 
characteristics of MGs in different operating conditions were 
investigated in [152], in which the DSTATCOM at different 
locations of the MG was used to compensate for voltage droop 
to provide additional reactive power. 
   Various methods can be used to increase the LVRT 
capability of fixed-speed induction generator-based wind 
turbines, some of which were presented in [153], where DVR 
series connection and STATCOM shunt connection in 
simulation results had very efficient approaches to increasing 
LVRT capability. 
   DVR was used in between the source voltage and critical or 
sensitive load in the MG system to improve the LVRT 
capability in [154], where in case of using DVR, it usually 
requires the series transformer, energy storage system, and 
converter. 
   In order to increase the power quality and modify the ability 
of LVRT in a three-phase medium voltage network, the use of 
DVR was proposed in [155], where the network is connected 
to a hybrid distributed generation system and there are WTG, 
PV plants and sensitive load at the same PCC. A comparison 
between SFCL and DVR for LVRT improvement of an MG 
was presented in [156]; according to the demonstrated results, 
in power stabilization, SFCL exhibited better control effects. 
Figure 16 shows the frequency characteristics of the MG 
under the fault. As is seen, two devices can both mitigate the 
fault current from the microgrid to the PCC. Figure 17 shows 
the load power variation curves of the microgrid before and 
after the fault. 

 

 
Figure 16. Frequency fluctuation in microgrids under the short-circuit fault 
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Figure 17. Load power in microgrids under the short-circuit fault 

 
4.1.3. Power quality profile enhancement 

When the microgrid is connected to the main grid, the impact 
of power quality issues is concerning and that can be a major 
issue for research. The major power quality problems are low 
power factor, high harmonic in distribution system, voltage 
flicker, active power and reactive power, increased reactive 
power required, and system voltage fluctuations [157]. 
   In order to compensate for the power quality problems 
created in the system connected to the microgrid, the use of 
UPQC device was investigated in [158], where an ANFIS was 
used to increase the UPQC compensation capacity based on 
the voltage estimate of link DC and its voltage regulation. 
   For non-conventional sources based MGs, adaptive 
management of the voltage and reactive power required for 
them was presented in [159], where UPFC was used to 
investigate the hybrid MG and analysis of the test system and 
the tuned parameters of the PI controller of UPFC were with 
fuzzy. 
   An online method to adjust tracking of DSTATCOM set 
point in MGs by monitoring the PCC voltage and distributed 
resources currents was presented in [160], where online 
control of DSTATCOM was obtained through reinforcement 
learning algorithm. Based on the most modern power 
conditioning equipment such as UPQC in the microgrid 
energy system, the use of fuzzy logic method was proposed in 
[161] where the MG working in conjunction with this method 
was employed to track disruption in smart grids and improve 
system quality with high flexibility. 
   In order to improve the power quality and reduce 
fluctuations when changing the microgrid connection modes, 
UPQC was used in [162], where UPQC integration and 
control was done using the control method in distribution 
generation-based MG systems. 
   The performance of stand-alone hybrid renewable energy 
system was enhanced in [163] using an optimal PI controller 
of DVR. There are three energy sources in this hybrid system 
including wind turbines, fuel cells, and solar PV cells. In all 
the three sources, the voltage, current, and power waveforms 
were enhanced. Also, WTG dynamics improvement and 
continuous performance of three sources in fault conditions 
were achieved. This indicates an increase in system 
performance. Figures 18 and 19 show the current and rms 
voltage of the fuel cell, respectively, and illustrate the effect of 
DVR when a three-phase fault with a fault clearing time of 
0.05 seconds is applied to the system. Fault clearing time 
ranges between 0.5 and 0.55 seconds. 
 
4.1.4. Reliability enhancement 

There are two types of objective functions used to solve the 
optimization problem: reliability indicators and system cost. 
Reliability enhancement is one of the benefits of MG system 
because it can work in grid-connected and islanding modes 
[164]. 

 

 
Figure 18. Influence of DVR on fuel cell output current at the three-

phase fault 
 
 

 
Figure 19. Influence of DVR on fuel cell output voltage at the three-

phase fault 
 
   To improve the reliability and limit the fault current, a 
compensator was proposed as an interface between the main 
grid and the MG in [165]. To inject voltage when in the fault 
in the main network resurfaces in two different places, i.e., the 
main network and MG, the DVR is used to ensure normal 
operation. 
   A bidirectional dc SSCB to realize the bidirectional flow of 
energy was proposed in [166], which guaranteed higher dc 
MG operating efficiency. 
 
4.1.5. Optimal scheduling 
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The goal of optimal scheduling is to optimize specific 
objective functions by planning the deployment of DGs, 
responsive loads, and power exchanges between the MG and 
the main network [167, 168]. 
   Optimal scheduling of MG was presented in [169], where 
uncertain parameters for modeling based on a stochastic 
method include solar radiation, wind speed, and loads, and to 
transfer more power to the upstream grid, the compensator 
(DVR) is placed in line between the main grid and the 
microgrid. 
   To help the PV penetrate higher, a multi-objective method 
for programming microgrids was studied in [170]. In order to 
control the volt/var process, the existing control devices such 
as under-load tap changer and DSTATCOM were 
coordinated. 
 
4.1.6. Dynamic stability 

A number of approaches to enhancing microgrid stability 
exist: using different control methods, supplying the required 
reactive power, cutting off the load, and reducing its amount 
and distributed energy storage systems [171, 172]. Due to the 
weak inertia of the equivalent system, autonomous MG 
control and management is more difficult and requires public 
network support [173, 174]. 
   An MG test system with DFACTS is considered to study the 
dynamic stability in [175] under various fault and load change 
conditions, in which the proposed method was given for 
control based on browser optimization and fuzzy logic. 
   The effect of an STATCOM on the frequency of islanded 
MGs based on frequency control using fuzzy cooperative 
control was investigated in [176], in which to achieve fast 
frequency control, instantaneous power balance between 

generation and consumption could be supplied through energy 
storage systems such as battery with a proper frequency 
control method. 
   An impact method to stabilize reactive power changes in 
islanded MGs was applied using advanced FACTS device and 
the UPFC connected to the MG was proposed in [177], 
leading to voltage instability control. 
   An SDTATCOM was presented in [178] to reduce the 
changes in the positive and negative sequence components of 
the main voltage and fundamental frequency. In this respect, 
the installation location of DSTATCOM in a low-voltage MG 
was discussed. 
 
4.1.7. Short-circuit protection 

Due to the development of commercially viable equipment 
with fast performance and the need for coordination and 
reliability, proper short-circuit protection in MGs is important. 
   A short-circuit protection methodology based on SSCBs that 
provides FCL in low-voltage dc MGs was evaluated in [179], 
where SSCB solutions based on IGCT were possible for low-
voltage microgrids according to the simulation results in a 
simple dc MG system, but it is necessary to connect several 
devices in parallel to open fast-rising fault currents. 
   An improved topology of the SSCB in dc MG was proposed 
in [180]. To determine the position of the fault, it is able to 
inject the signal into the faulty line. 
 
4.2. Review study of DFACTS in microgrid 

Some of the available review studies on the application of the 
DFACTS for improving the performance in MGs are 
mentioned in Table 8. 

 
Table 8. A review of studies on DFACTS in microgrids 

Ref. Research topic Specifications (Summary of the review studies) 

[181] Protection dc 
microgrid 

The benefits and shortfalls of the wide bandgap SSCBs and its application with 
PV generators were investigated. 

[182] Power quality 
improvement 

The techniques commonly used for power quality enhancement of MGs were 
presented. Methodologies such as PSO, filters, controllers, compensators, and 

DFACTS devices were analyzed. 

[183] Improve stability 
and power quality 

A number of DFACTS devices were reviewed in terms of function. DFACTS  
devices can contribute to building independent and high-quality microgrids along 

with stability and quality improvement. 

[184] 
Reactive power 
compensation 

methods 

Challenges and issues related to power quality in the microgrid were investigated. 
Compensation methods were expressed using various control techniques, 

algorithms, and devices. 
 
5. CONCLUSIONS 

Microgrids have many advantages over conventional power 
grid networks. An MG reduces power losses in the 
distribution system and improves network power capacity and 
reliability. Also, it provides local support for voltage and 
frequency regulation. In this paper, several researches that are 
related to MG and DFACTS were studied and reviewed. To 
use the DFACTS devices, they were mounted on transmission 
towers or connected to conductors. They have been widely 
used in distribution systems to improve the system 
performance. They offer many potential benefits for MG 
operations. Further, this paper also throws light on the major 
role of DFACTS in microgrid performance, some of its 
limitations, and future prospects. 
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NOMENCLATURE 

ANFIS Adaptive Neuro Fuzzy Inference System 
DFACTS Distributed Flexible AC Transmission System 
DG Distributed Generator 
DPFC Distributed Power Flow Controller 
DSSC Distributed Static Series Compensator 
DSTATCOM Distribution Static Synchronous Compensator 
DVR Dynamic Voltage Restorer 
FACTS Flexible AC Transmission System 
FCL Fault-Current Limiting 
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HVDC High-Voltage DC 
IGCT Integrated Gate-Commutated Thyristor 
IGCT Integrated Gate-Commutated Thyristor 
LFO Low Frequency Oscillation 
LVRT Low-Voltage Ride-Through 
MG Microgrid 
PCC Point of Common Coupling 
PI controller Proportional-Integral Controller 
PSO Particle Swarm Optimization 
PV Photovoltaic 
SFCL Superconducting Fault Current Limiter 
SSCB Solid-State Circuit Breaker 
SSSC Static Synchronous Series Compensator 
UPQC Unified Power Quality Compensator 
WBG Wide Bandgap 
WTG Wind Turbine Generator 
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