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A B S T R A C T  

 

Clean solar energy is one of the best sources of energy. Solar power plants can generate electricity in Iran due 

to their large number of sunny days. This paper presents a short-term forecasting approach based on artificial 

neural networks (ANNs) for selected solar power plants in Iran and ranks the input variables of the neural 

network according to their importance. Two solar power plants in Hamadan province (Amirkabir and Khalij-

Fars) were selected for the project. The output of solar power plants is dependent on weather conditions. Solar 

radiation on the horizontal plane, air temperature, air pressure, day length, number of sunny hours, cloudiness, 

and airborne dust particles are considered input variables in this study to predict solar power plant output. 

Forecasting model selection is based on considering zero and nonzero quantities of target variables. The results 

show that solar production forecasting based on meteorological parameters in the Khalij-Fars is more accurate 

than Amirkabir. The global solar radiation, air temperature, number of sunny hours, day length, airborne dust 

particles, cloudiness, air pressure, and dummy variables1 are the order of the most important inputs to solar 

power generation. Results show simultaneous influences of radiation and temperature on solar power plant 

production. 

 

https://doi.org/10.30501/jree.2023.363386.1461 

                                                           
1. The first half of the year is counted as one, and the second half is counted as zero. 

1. INTRODUCTION2 

Energy production has long been accompanied by carbon 

emissions. Carbon emission is one of the most important 

environmental issues leading communities to use renewable 

energy sources. According to the EIA report of Country 

Analysis Executive summary, Iran was the fifth-largest oil 

producer in 2020 and the third-largest gas producer in 2019. 

Iran is ranked the third as the world's largest proved reserve 

holder of oil and second-largest proved reserve holder of 

natural gas. Easy access to fossil fuels means that 73 % of 

Iran's net electricity generation is from natural gas, 15 % from 

oil, 10 % from hydropower, 2 % from nuclear power plants, 

and just less than 1 % from coal and non-hydro renewable 

energies (EIA, 2021). There are several major oil and gas 

refineries in Iran, which have led to the country ranking 

seventh in carbon dioxide emissions worldwide indicating the 

importance of reducing them (Mamipour et al., 2019). 

   In spite of the cheaper cost of production of electricity from 

the combustion of fossil fuels and the lower amount of 

electricity produced by renewable power plants and fossil fuel 

                                                           
*Corresponding Author’s Email: s.mamipoor@khu.ac.ir (S. Mamipour) 

  URL: https://www.jree.ir/article_166555.html 

power plants, the development of renewable energy is more 

pragmatic for environmental reasons. Since the establishment 

of new solar power plants in Iran is assigned to the private 

sector, the return of capital to investors is an important aspect 

and it is indicative that accurate predictions are critical to the 

establishment of new solar power plants. Some deficiencies 

might dampen investment enthusiasm for building new solar 

power plants. To maximize the amount of power generated in 

a given region, the meteorological variables affecting solar 

power output must be precisely calculated. A weather forecast 

can help investors select the optimal equipment and panels for 

a particular region. Due to Iran's vast size and wide range of 

climates, this factor is very important in choosing the best 

sites for establishing new power plants. An accurate 

assessment of the impact of weather variables on the output of 

solar power plants can greatly affect the optimum choice for 

their siting. 

   The general idea is that the high radiation points are the best 

regions for establishing solar power plants, but the 

temperature will rise as the sun rises, which will decrease the 

efficiency of the power plant (Bhavani et al., 2021). The main 

factors that affect the performance of power plants should be 

ranked empirically based on climate and region. In 

determining the output of solar power plants, only the factors 

https://doi.org/10.30501/jree.2023.363386.1461
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that are most likely to affect solar power production should be 

taken into account. 

   As shown in Figure 1, solar power plants should be 

established in flat, wide areas that are near the main power 

grids. To ensure that the selected place is a suitable location 

concerning points in its immediate vicinity, one needs to 

examine and analyze the most important meteorological 

parameters of the selected region. 
 

 
Figure 1. Overview of Iran’s renewable power plants –end of year summary 2020 

 

   Figure 1 outlines the location and capacity of installed 

renewable power plants in Iran. The north of Iran has no solar 

power plants in operation because the weather condition is 

mild and there are more rainy days than sunny days. 

   As the sun shines for long periods in most regions of Iran, 

this clean energy may be used to generate electricity. As a 

result of intermittent fluctuations in PV3 system output, 

production is also volatile during the day. Some particles in 

the atmosphere, such as water vapor and gases in the 

atmosphere, absorb some of the sun's rays, while others, such 

as dust particles in the atmosphere, disperse this energy into 

space (Carra et al., 2018). In general, about 340 watts per 

square meter of solar energy falls to the earth, but only 48 

percent of it reaches the ground and can be used for solar 

energy production. 29 % of solar radiation is reflected in 

space by clouds, bright surfaces, and atmospheres. Gases in 

the atmosphere, dust, and other particles absorb 23 percent of 

this energy (NASA, 2009). Approximately, 48 % of this solar 

radiation can be used by photovoltaic panels to produce solar 

energy. Accordingly, the amount of sunlight reaching the 

earth's surface fluctuates with climate conditions, Thus, 

                                                           
3 A photovoltaic (PV) system is made up of one or more solar panels with an 

inverter and other electrical and mechanical equipment that converts sunlight 

into electricity. 

photovoltaic cells have variable output. Atmospheric 

fluctuations affect solar electricity production. There have 

been many studies attempting to model the output of solar 

energy production based on this fluctuation, which has led to 

numerous studies estimating the output of solar plants (Jung et 

al., 2020; Vaka & Talukdar, 2020; Zaaoumi et al., 2021; Zhao 

et al., 2021). The major categories for predicting solar energy 

are theoretical sunshine-based models, empirical 

meteorological parameters, and combinations of both 

meteorological models and sunshine-based models (Jahani et 

al., 2017). It has been reported that the amount of global solar 

radiation on the horizontal plane, air temperature, air pressure, 

number of sunny hours, cloudiness, dust particles in the air, 

and relative humidity can have an impact on the performance 

of solar power plants (Bugała et al., 2018; Khosravi et al., 

2018; Loghmari et al., 2018; Rao et al., 2018). 

   In some cases, solar power plants are not located near 

meteorological stations. However, they need to measure 

meteorological parameters to accurately predict power plant 

output. Since establishing new meteorological stations is very 

expensive, this study investigates what can be done to make 

accurate predictions more reasonable. 

 

2. LITERATURE REVIEW 
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The following papers (Bugała et al., 2018; Ghritlahre & 

Prasad, 2018; Loghmari et al., 2018; Olden et al., 2004; Rao et 

al., 2018; Shireen et al., 2018) discuss the application of 

neural networks to solar system prediction. In previous 

research, neural networks have been used to estimate the 

following topics: 

i. Solar energy prediction 

ii. Solar radiation prediction 

iii. Predicting the output of solar systems 

iv. Meteorological ANN models for Iran’s weather condition 

   Detailed in the topics below, it explains that the connection 

weight method is selected in the current research based on 

previous studies to analyze the importance of input variables. 

 

i. Solar energy prediction 

Shireen et al. (2018) developed a model based on repeated 

multi-purpose learning. Owners of solar power systems can 

benefit from modeling PV output time series because this 

allows them to understand how energy systems behave over 

time. An effective method of multifunctional learning is 

proposed for the MTL-GP-TS time series to predict PV 

output. By combining PV measurements from multiple solar 

panels with similar traits, measurements are improved. 

Learning the proposed MTL-GP-TS model iteratively 

uncovers hidden or missing values in a set of panel-related 

time series that are potentially useful in predicting PV trends. 

Furthermore, it improves the traditional multifunctional 

learning process and generalizes the Gaussian process of 

learning both global trends and irregular local components. 

Based on a real-world case study, the proposed approach can 

improve conventional approaches significantly. 

 

ii. Solar radiation prediction 

Halabi et al. (2018) evaluated the performance of hybrid 

models of adaptive neuro-fuzzy inference systems for 

predicting monthly solar radiation. The output of solar energy 

systems is highly dependent on solar radiation. Therefore, 

accurate forecasting of solar radiation is very important. 

Hence, a consistent independent fuzzy inference system and a 

hybrid model were developed to predict monthly solar 

radiation following various meteorological parameters such as 

irradiation time S(h) and air temperature. Their proposed 

hybrid models include particle swarm optimization, genetic 

algorithms, and differential evaluation. To evaluate the 

capability and efficiency of the proposed model, several 

statistical indicators such as mean squared error, correlation 

coefficient, and mean absolute error are used. Performance 

evaluation over various statistical indicators exhibited a high 

correlation for all of the developed modules. Hybrid particle 

swarm optimization has obtained the best statistical indicators 

in all of the models. An accurate comparison with other 

studies has been performed to validate the accuracy of the 

proposed prediction models and their appropriateness. The 

results showed that the developed hybrid models had the 

highest reliability, more accurate estimation, and the most 

efficient methods for global prediction. 

   Loghmari et al. (2018) compared the performance of two 

models of global solar radiation. They developed two global 

satellite models for solar radiation: an artificial neural network 

(ANN) and a reverse weighting model (IDW). The goal is to 

predict global solar radiation at a distance of more than 50 km. 

The ANN model uses meteorological data in the inventory 

target area, while the IDW model employs global solar 

radiation measured in neighboring areas. For the construction 

and validation of the models, for 5 consecutive years (2008-

2012), the values of 5 different meteorological parameters 

were collected monthly from 10 meteorological stations 

located in the south and center of Tunisia. The evaluation 

results of the two models provide comparable results. For the 

developed ANN model, the average root of the mean square 

error is 6.4 %, while for the IDW model, it is 5.11 %. The 

IDW model is simpler and slightly more accurate than the 

ANN model. This study examined the behavior of two models 

for different climate conditions through two scenarios. The 

results show that the number of samples that ANN is trained 

to predict Global Horizontal Irradiance (GHI) is more 

important than the climatic conditions from which these 

samples are retrieved. However, providing input data from 

sites with similar weather conditions to the predicted area 

increases the accuracy of the IDW model. In the present study, 

data from meteorological stations are collected because, in 

real conditions, all countries cannot have free access to 

satellite meteorological data. 

   Rao et al. (2018) analyzed different combinations of 

meteorological parameters in predicting the amount of total 

horizontal solar energy radiation with a neural network 

approach. For the input variables of biennial data for the 

characteristics of total daily radiation, minimum temperature, 

maximum temperature, minimum and maximum temperature 

difference, sunny hours, sunny hours in theory, and 

extraterrestrial radiation are considered. Different 

combinations of input variables were considered to predict 

monthly solar radiation. Out of 32 possible modes, models 

with a combination of the theoretical sunny hours and 

extraterrestrial radiation had the best performance. These two 

parameters are available for any location and do not need to 

be measured. The best performance belonged to the case with 

the least number of inputs. In the present study, we try to 

eliminate unnecessary parameters and unreasonable 

combinations from the predicted models and with fewer 

computations try to get more accurate results. 

 

iii. Predicting the output of solar systems 

Short-term predictions of power generation in photovoltaic 

systems were made (Bugała et al., 2018). An in-depth analysis 

of the input data measured in Poland showed that the effect of 

some variables such as air pressure and day length was 

statistically insignificant. The values of skewness, elongation, 

and the results of experiments applied to investigate the 

distribution of the dependent variable for daily power 

generation indicated that the linear regression model should 

not be the only method in the forecasting process. The 

developed neural network was based on the RBF model with a 

quality test of approximately 93 % and an RMS error of    

0.02 %. The input variables required for the proposed ANN 

model included the number of sunshine hours, day length, air 

pressure, maximum air temperature, amount of daily radiation, 

and cloudiness. 

   Ghritlahre & Prasad (2018) applied neural network 

techniques to predicting the performance of solar collectors. 

Solar collectors are designed for low- to medium-temperature 

ranges. Therefore, the optimal design of collector systems 

helps to increase solar energy efficiency. In this research, a 

neural network technique is proposed to estimate the thermal 



A. Ahmadi et al. / JREE:  Vol. 10, No. 4, (Autumn 2023)   131-145 
 

134 

performance of the multilateral flow of a porous solar air 

heating bed. This study further addresses the research gap in 

research conducted on solar collectors. The present study has 

confirmed that both temperature and global horizontal solar 

radiation in real case studies are simultaneously significant to 

the output of solar power plants. 

 

iv. Meteorological ANN models for Iran’s weather 

condition 

Gorjian et al. (2015) modeled solar radiation potential in Iran 

based on the meteorological and geological data of 31 stations 

spreading all over the country. They considered solar radiation 

as the target variable and month of the year, latitude, 

longitude, altitude, sunshine duration, minimum air 

temperature, maximum air temperature, maximum daily earth 

temperature, atmospheric pressure, and precipitation as input 

variables. 

   Solar radiation reaching the Earth was modelled using 

ANFIS, NN-ARX (Piri & Kisi, 2015). It was a case study of 

two synoptic stations of Zahedan and Bojnurd. The data 

included sunshine hours, maximum and minimum 

temperatures, average relative humidity, and solar radiation. A 

comparison was made between artificial intelligence models 

and empirical models. It was found that ANFIS performed 

better than the empirical models in estimating daily solar 

radiation. 

   Khosravi et al. (2018) performed hourly predictions of solar 

radiation on Abu Musa Island using machine learning 

algorithms. This study proposed machine learning algorithms 

for predicting hourly solar radiation. Prediction models were 

developed based on two types of input data. The first model 

uses local time, temperature, pressure, wind speed, and 

relative humidity as input variables of the model (N1), and the 

second model predicted solar radiation (N2). Predictive 

models use only past solar radiation values to estimate future 

values. For this purpose, a multilayer feed-forward neural 

network (MLFFNN), radial basis function neural network 

(RBFNN), support vector regression (SVR), fuzzy inference 

system (FIS), and an adaptive fuzzy inference system 

(ANFIS) were used. The results showed that for N1 models, 

SVR and MLFFNN had the maximum predicted solar 

radiation performance with R = 0.9999 and 0.9957, 

respectively. For N2, SVR, MLFFNN, and ANFIS models 

reported a correlation coefficient more than 0.95 for the test 

data set. 

   Many empirical studies predict solar radiation depending on 

the weather conditions in Iran, but none of these studies has 

investigated the impact of meteorological parameters on the 

production of solar power plants, and their focus is only on 

prediction solar radiation. Obviously, to predict the production 

of solar power plants based on meteorological parameters, real 

and accurate data are required, which is followed in this 

research. Therefore, the main contribution of this paper is that 

it tries to predict the output of solar power plants by using 

meteorological parameters. In this study, eight meteorological 

parameters that affect the output of solar power plants are 

considered as input variables. In meteorological and 

hydrological research, the question always arises as to which 

one of the input variables of the neural network has a more 

important role in prediction. Although model sensitivity 

analysis in most studies is not common, there are methods to 

determine the importance of input variables. Garson methods, 

connection weights, partial derivatives, sensitivity analysis, 

adding a parameter to the model, and removing a parameter 

from the model are some of the methods for measuring the 

importance of parameters (Olden et al., 2004). Based on the 

research of Olden et al. (2004), the best method is the 

connection weights. In this study, the connection weights 

method is used to rank the importance of input variables. 

 

3. METHODOLOGY 

ANN models are the most common data mining models 

inspired by human brain functions and are used to model both 

linear and nonlinear systems. In the present study, data with 

three-hour and daily frequency for the meteorological 

parameters are considered from the IRIMO organization for 

the parameters of cloudiness, temperature, air pressure, and 

the number of sunny hours, but the purpose of the study 

includes hourly and daily prediction. Consequently, hourly 

and daily data sets were retrieved from the SODA website for 

temperature, air pressure, solar radiation, day length, and 

global horizontal irradiation. Since the website does not report 

cloudiness information and the number of sunny hours, data 

from the IRIMO organization was used. By assuming that the 

amount of cloudiness and the number of sunny hours during 

three hours are constant, these two variables are converted 

into hourly ones. One of the highly correlated variables of 

meteorological features is cloudiness. This variable is often 

reported at airport meteorological stations. In the city of 

Qahavand, cloudiness was not reported for 5 months; 

therefore, cloudiness data were retrieved from the nearest 

meteorological station, Hamadan airport station. ANNs were 

made of three layers. The first one is called the input layer 

which consists of input variables introduced in Table 1. 

 

Table 1. Input and output parameters 

Input Output Symbols Unit Frequency Source Explanation 

 

Input 

GHI Wh/m2 Hourly & daily SODA (Professionals, 2021) 
Global solar radiation on a horizontal plane 

at the ground level 

Temp Celsius degree4 Hourly & daily SODA 
Temperature at a height of 2 meters above 

the ground 

Press hPa 5 Hourly & daily SODA Air pressure 

Dayl Hour Daily SODA Length of the day from sunrise to sunset 

Nsun Hour Daily IRIMO (IRIMO, 2018) Number of sunny hours 

C Okta Each 3-hours IRIMO Cloudiness 

Dust Nanometer Each 3-hours SODA Dust @ 550 nm 

Dummy - - - first half of the year = 1; second half of the 

                                                           
4 Two data collections for temperature are acquired from IRIMO and SODA website. 
5 Hectopascal (100 x 1 pascal) - pressure units. 
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year = 0. 

Output Target kWh Hourly & daily IGMC (IGMC, 2017) 
The amount of solar power generation per 

unit 

 

The second one is called the hidden layer which is the center 

of all computations, weights, biases, activation functions, and 

calculation nodes located in this layer. Finally, the last layer is 

called the output layer which only shows the result of 

computations in the hidden layer. A brief diagram of ANN 

with input and output parameters is shown in Figure 2. 
 

 
Figure 2. Schematic structure of neural networks 

 

   The purpose of the current study is to propose how to select 

input variables to estimate an accurate model for predicting 

the output of solar power plants with meteorological station 

data. The process of estimation of models in this paper is 

shown in Figure 3. After selecting the best estimation model, 

input variables are ranked based on the connection weight 

method. The proposed model can be used to select input 

variables to estimate the output of solar power plants. Indeed, 

the current study is done with real meteorological station data 

and it can be useful for medium to small power plants  that do 

not have access to satellite meteorological data. 

 

 
Figure 3. The process of modeling 
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3.1. Pre-processing steps 

The algorithm of the proposed approach is given in Algorithm 

1. For minimizing the estimation error, some steps are 

necessary for cleaning data before estimation. Preprocessing 

eliminates the negative effect of different input variable 

scales. The min-max method is used in the current study to 

normalize input variables and convert all input and target 

variables to ranges 0 and 1. In this method, the data is 

normalized based on the following formula: 

x′
ij =

xij − xmini j

xmaxi j − xmini j
(xmaxi j

′ − xmini j
′ ) + xmini j

′  

where xmaxi j = max xij indicates the maximum value of 

variable j and xmini j = min xij indicates the minimum value 

of variable j. Moreover, x′
maxi j and x′

mini j are maximum and 

minimum values of variable j, respectively, in the new range. 

In the current study, xmaxi j
′  and x′

mini j are considered 1 and 

0.1 to normalize data between (0.1,1). 

 

3.2. Select the best training function 

To choose the best training function, it is necessary to 

compare the performance of different training functions. Daily 

data from the Khalij-Fars power plant were used for this 

purpose. Each neuron is trained 30 times with a specific 

training function. As the weights and biases are assigned 

random values at every execution of the neural network, the 

error is sensitive to sampling and it was not satisfactory to rely 

on the results of one run of the model. Therefore, for each 

neuron i, the network is trained 30 times with each of these 

training functions. The function with the least mean squares 

error was selected as the optimum training function. 

 

3.3. Find the optimal number of neurons 

Data were randomly divided into three sets of training, 

validation, and test data with a ratio of 15-15-70. In each 

model, for one neuron up to 15 neurons, the model was 

repeated 100 times so that we could find the minimum optimal 

neuron. The average MSE error of 100 repetitions was 

calculated for each neuron. The model that was minimized in 

terms of the average MSE error of the validation dataset was 

selected as the optimal network. 

 

3.4. Estimate model and rank input variables 

In the present study, the logsig transfer function is used for the 

Multi-Layer Perceptron neural network (MLP). In the 

following, we turn to the selection of the optimal neural 

network model. The first step is to select the appropriate 

training function and the second step is to find the optimal 

number of neurons. 

 
Algorithm1. Algorithm of the proposed approach 

 Input variables: i = [GHI, Temp, Press, Dayl, Nsun, C, Dust, 

Dummy] 

 Target variable: output of solar power plants 

 Final result: 

1- Predicting the output of solar power plants 

2-  Ranking the importance of each variable by the connection 

weight method 

 Data pre-process steps: 

Step1: Normalizing data with maximin method between (0.1,1) 

using the following equation: 
 

x′
ij =

xij − xmini j

xmaxi j − xmini j
(xmaxi j

′ − xmini j
′ ) + xmini j

′  

 

Step2: Find the best training function among Bayesian 

Regularization Backpropagation (trainbr), Levenberg-Marquardt 

(trainlm), Scaled Conjugate Gradient (trinscg), and Conjugate 

Gradient with Powel/Beale Restarts (traincgb). 
 

Step3: Find the optimum number of neurons for each model 
 

 Model estimation 

Step4: Estimate the model with 8 input variables and evaluate the 

error criteria 
 

Step5: Save the network weights: 

1- Input to hidden layer weights: Winput( i ) – hidden neuron( j ) 

2- Hidden layer to output layer weights: Whidden neuron( j ) – output 

Step6: Eliminate one variable and estimate the model with 7 input 

variables and evaluate error criteria. 
 

Step7: Save the network weights: 

1- Input to hidden layer weights: Winput( i ) – hidden neuron( j ) 

2- Hidden layer to output layer weights: Whidden neuron(j ) – output 

 Ranking parameters 

Step8: Connection weight method: The calculations of the 

method of connection weights are as follows: 
 

1- Multiplication of the transpose of weights from the input layer 

to the hidden layer by the weights of the hidden layer to the output 

layer (Each row of this matrix represents an input). 

W − Connectionweightmethodinput(i)

= Winput(i)−hiddenneuron(j)

∗ Whiddenneuron(j)−output 

2- Summarization of the numbers in each row of this matrix 

indicates the importance of its corresponding property. 

Total Rank of Input (i) 

= ∑(Winput(i)−hidden neuron(j) ×

n

j=1

Whidden neuron(j)−output) 

 

3.5. Case study 

The Iranian grid management company provided daily and 

hourly output data for all in-operation solar power plants. As 

shown in Figure 4, Hamedan is ranked the first in solar energy 

production. We selected two power plants with the most 

available data from the received data. In Hamadan province, 

the final outputs of two solar power plants, Amirkabir and 

Khalij-Fars, are considered since their establishmen. 

   The target variable for this study is the amount of electricity 

generated by selected solar power plants. In three formats, 

hourly, daily, and monthly, the Iran power grid management 

company has provided data related to the production of the 

Khalij-Fars power plant located in the city of Qahvand during 

the period of 2017/03/19 until 2018/03/20 and data related to 

Amirkabir, located in the city of Qerkhlar, from the date the 

power plant began operating, 2017/01/28, until 2018/03/20. 

   According to Google maps, the distance between Amirkabir 

solar power plant and Hamedan airport is 14.7 km (Map, 

2023a) and the distance between Khalij-Fars solar power plant 

and Hamedan airport is 33.1 km (Map, 2023b). 
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Figure 4. The total number of installed photovoltaic power plants in each province (MW) – Iran 

 

 

Table 2. Description of data and the geographical location of selected solar power plants 

Plant City Longitude Latitude Start date End date 

Number of 

daily data 

with zero 

production 

Number of 

hourly data 

with non-zero 

production 

Number of hourly 

data with zero 

production 

Khalij-

Fars 
Qerkhlar 48.5550 34.9847 2017/03/21 2018/03/21 417 5367 10008 

Amirkabir Qahavand 48.9984 34.8586 2017/03/21 2018/03/21 426 5438 10224 

 

In previous studies and as mentioned above, the temperature 

negatively affects solar collector performance (Ma et al., 

2020). It is also shown in Figures 5 and 6. Although greater 

solar radiation occurs during warm days of the year when 

temperatures exceed 25 degrees Celsius, PV solar energy 

plants often produce the most when temperatures are below 

that level. 

 

 
Figure 5. The daily total output of the selected solar power plants (IGMC, 2018) 
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6(a) Average Temperature by Month – Hamedan airport station 6(b) Average GHI by month – Hamedan airport station 

Figure 6. Average Temperature & GHI by month – Hamedan airport station (IRIMO, 2018) 
 

3.6. Assessment criteria 

A prediction model's accuracy must be checked after 

evaluation. For the time series Yt which contains k elements, 

the time series ft is estimated. Table 3 presents the 

performance evaluation functions and a brief description of 

them. 

 

Table 3. Assessment criteria and descriptions 

The formula of the performance function Description Performance analysis 

MAPE =
∑ |

yt−ft

yt
|k

t=1

k
 

Mean absolute percentage error (MAPE) is 

used to differentiate between prediction 

models and to select the optimal model 

 MAPE < 10 %: High predictive power 

 10 % < MAPE < 20 %: Good predictive 

power 

 20 % < MAPE < 50 %: Logical predictive 

power 

 MAPE > 50 %: Incorrect prediction 

MSE =
∑ (yt − ft)2k

t=1

k
 

Mean square error (MSE) is one of the most 

popular performance evaluation criteria. The 

most important drawback of this criterion is 

that it increases the effect of large errors. 

Nearest to zero shows a more accurate 

forecast 

 

RRMSE =
√∑ (yt−ft)2k

t=1

k

∑ yt
k
t=1

∗ 100 

This error is the root of RMSE and is called 

(RRMSE). In the present study, the model 

was selected with the highest accuracy by 

comparing the two criteria of MAPE and 

RRMSE. 

 RRMSE < 10 %: High predictive power 

 10 % < RRMSE < 20 %: Good predictive 

power 

 20 % < RRMSE < 30 %: Logical 

predictive power 

 RRMSE > 30 %: Incorrect prediction 

R =
∑ (fi − f̄)(yi − ȳ)k

i=1

√∑ (fi − f̄)2k
i=1 √∑ (yi − ȳ)k

i=1

 

The correlation coefficient called (R) 

represents the percentage of a total change of 

the dependent parameter, which can be 

explained by independent parameters. If the 

value of the correlation coefficient is exactly 

1, it indicates that 100% of the dependent 

parameter changes are explained by 

independent parameters. 

 R > 0.9 shows well-fitted models 

 0.8 < R < 0.9 shows good accuracy 

 0.5 < R < 0.8 shows weak fitted models 

 

4. RESULTS AND DISCUSSION 

4.1. Heatmap correlation of all variables in Khalij-Fars 
dataset 

The heatmap correlation of all input and output variables for 

the Khalij-Fars power plant is shown in Figure 7. As is shown 

in Figures 7-a and 7-b, there are some differences between the 

correlation of parameters in daily and hourly inputs and target. 

In daily estimation, three more correlated factors are Nsun 

GHI and Dayl. In hourly estimation, 3 more correlated factors 

are GHI temperature and Nsun. 

 

4.2. Heatmap correlation of all variables in the 
Amirkabir dataset 

The heatmap correlation of all input and output variables of 

Amirkabir solar power plant is shown in Figure 8. Based on 

Figure 8-a, six input variables correlate more than 0.6, 

showing that our daily prediction will be more precise than the 

hourly forecast. In daily estimation, three more correlated 

factors are Nsun, GHI, and Dayl. In hourly estimation, three 

more correlated factors are GHI temperature and Nsun; 

however, as shown in Figure 8-b, just one input variable 

(GHI) has a correlation above 0.5 and it shows that hourly 

forecasts are highly dependent on the GHI data. This result 

shows that in both power plants, three more correlated factors 

in daily and hourly estimations are the same; therefore, it is 

confirmed that the most important factor should be selected 

based on the granularity of the model. 
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7(a) Heatmap correlation of daily inputs 

 

7(b) Heatmap correlation of hourly inputs 

Figure 7. Heatmap correlation of inputs and target - Khalij-Fars 
 

 

 

8(a) Heatmap correlation of daily inputs 
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8(b) Heatmap correlation of hourly inputs 

Figure 8. Heatmap correlation of inputs and target- Amirkabir 

 

4.3. Selecting the best training function  

As shown in Figure 9, the mean squared error of four training 

functions is compared to select the best function with 

minimum squared error. For each training function, the 

number of neurons varied from 1 to 10 to see the result of an 

increasing number of neurons on the performance of the train 

function. As shown in Figure 9, the network error with the 

trainlm and trainbr training functions is similarly lower than 

trinscg and traincgb. The model error with the trainlm training 

function and 7 neurons (i = 7) has the least error. As the 

selection of the optimal neuron and training function should 

be based on the selection of the neuron with the least average 

squared error in the validation data set, the Cumulative error 

distribution diagram is used to compare the four training 

functions. 

 

 
Figure 9. Selecting the best training function 

 

4.4. Finding optimized network 

The initial phase of our study will examine the network 

outputs of each solar power plant. First, a network with 8 

parameters is estimated. Then, one of the features is removed 

from the model. A feature is omitted from every model, The 

optimal network structure (based on the least number of 

neurons and the best training function) is determined by the 

least amount of error in the validation data set. Errors are 

more likely to occur when a variable is highly correlated with 

a target variable. The optimal models are selected based on 

the MSE, RRMSE, R, and MAPE values. According to the 

correlation-weight method, the variables are then ranked 

based on their importance. Reported errors are calculated 

based on the average of 100 replicates. 

 

4.4.1. MSE criterion 

As shown in Figure 10, the hourly forecast with zero 

production in the Khalij-Fars power plant has the least error. 

If we increase the number of data, then MSE errors will 

decrease. Therefore, if we compare only MSE errors, we 

cannot determine the most accurate models between hourly 

forecast and daily forecast. 
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Figure 10. MSE and RRMSE error criteria of forecast models 

 

4.4.2. RRMSE criterion 

As shown in Figure 10, the hourly forecast with zero 

production in the Khalij-Fars power plant has the least 

RRMSE error. 

 

4.4.3. R criterion 

In Figure 11, hourly forecast with zero production in the 

Khalij-Fars power plant model with 7 input variables without 

the air pressure has the nearest value of 1. It means that the 

elimination of the pressure from the input variables will 

increase the R and decrease the MAPE and it shows that air 

pressure does not have a major impact on the output of solar 

power plants. 

 

4.4.4. MAPE criterion 

As shown in Figure 11, Khalij-Fars daily forecast with zero 

production without considering air pressure has the lowest 

MAPE error. In all the estimated models, elimination of GHI 

has the most negative effect on the performance of estimation 

and this shows the obvious high impact of GHI on the output 

of the solar power plant. 

   Compared to estimations of the Amirkabir power plant, the 

Khalij-Fars power plant has the least errors. To improve 

forecasting at Amirkabir, more accurate data is needed.  In the 

absence of data on cloudiness parameters and the number of 

sunny hours, Hamadan airport data was used, which is 

approximately 15 kilometers away from the power plant. Note 

that the number of sunny hours was only reported once during 

the day and this variable was reported only at airport 

meteorological stations. It was expected that the number of 

sunny hours would be highly correlated with the amount of 

energy produced; however, the frequency of this variable did 

not line up with the hourly forecast (it was reported every 3 

hours in the IRIMO dataset). As a result, removing this 

variable improves model performance in most of the hourly 

forecast models. 

 

4.5. Importance analysis of input variables by 
connection weight method 

In all the forecasting models, the connection weight method is 

run and the most important input parameters are ranked. The 

most important factor in all of the models is global horizontal 

irradiance, as illustrated in Figures 12. The second important 

parameter for the Khalij-Fars solar power plant (which is the 

more accurate forecast) is the temperature, and the third is the 

number of sunny hours. According to the connection weights 

method, the number of sunny hours appears to be an important 

variable in the model. Recent studies have supported this 

finding (Bugała et al., 2018; Loghmari et al., 2018; Rao et al., 

2018). The number of sunny hours has been reported as an 

important and influential variable in the amount of solar 

energy production. This demonstrates the importance of 

measuring the number of sunny hours at meteorological 

stations on an hourly basis. As mentioned above, the best 

prediction model for the Amirkabir power plant was 

introduced the daily forecast mode with zero production and 

without air pressure. 
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Figure 11. R and MAPE error criteria of the forecast models 

 

 

Table 4. Finding minimum error in all the estimated models 

Model MSE RRMSE MAPE R 

Hourly forecast with zero production Khalij-Fars power plant * *   

Daily forecast with zero production Khalij-Fars power plant   * * 

 

 

 
Figure 12. Result of the connection weight method 

 

Consequently, this mode should be used to analyze the 

importance of input variables since it is the most accurate. In 

the case of daily forecast mode without zero production with 

seven variables without dust, the most important variable is 

global horizontal irradiance; the second one is the number of 

sunny hours; and the third one is temperature. 
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Figure 13. Performance plot of the best-estimated model Khalij-Fars daily forecast without considering air pressure 
 

 

  

Structure of input layers to the hidden layer Structure of the hidden layers to output 

Figure 14. Structure of the estimated neural network 

 

According to the results in Figure 13, all datasets show that 

the value of R is greater than 0.90; thus, the results of the 

connection weight method for Khalij-Fars daily forecast 

without considering air pressure with 6 neuron is considered 

the best-estimated model. Figure 14 shows the structure of the 

estimated network. 

   The equation of best-estimated model (Khalij-Fars daily 

forecast) without considering air pressure with 6 neurons is 

reported below: 
 

Winput( i)−hidden neuron(j)∗ input(i) = αj 

O1 = f(α1) = f((−2.27 ∗ ghi) + (1.74 ∗ temp) + (2.50 ∗ dayl) + (0.64 ∗ nsunh) + (2.71 ∗ c) + (−0.73 ∗ dust) + (−1.21 ∗ dummy) − ϕ
1

)

=
1

1 + e−α1
 

O2 = f(α2) = f((1.32 ∗ ghi) + (−0.30 ∗ temp) + (0.01 ∗ dayl) + (1.82 ∗ nsunh) + (1.99 ∗ c) + (−0.62 ∗ dust) + (0.02 ∗ dummy) − ϕ
2

)

=
1

1 + e−α2
 

O3 = f(α3) = f((0.76 ∗ ghi) + (2.52 ∗ temp) + (1.11 ∗ dayl) + (0.80 ∗ nsunh) + (0.90 ∗ c) + (−0.27 ∗ dust) + (0.99 ∗ dummy) − ϕ
3

)

=
1

1 + e−α3
 

O4 = f(α4) = f((−1.56 ∗ ghi) + (1.28 ∗ temp) + (−0.34 ∗ dayl) + (−0.17 ∗ nsunh) + (−2.82 ∗ c) + (1.05 ∗ dust) + (−2.98 ∗ dummy)

− ϕ
4

) =
1

1 + e−α4
 

O5 = f(α5) = f((0.29 ∗ ghi) + (1.71 ∗ temp) + (−1.29 ∗ dayl) + (0.83 ∗ nsunh) + (−1.51 ∗ c) + (1.57 ∗ dust) + (−2.06 ∗ dummy) − ϕ
5

)

=
1

1 + e−α5
 

O6 = f(α6) = f((1.36 ∗ ghi) + (−2.18 ∗ temp) + (−1.44 ∗ dayl) + (0.19 ∗ nsunh) + (−1.78 ∗ c) + (1.45 ∗ dust) + (0.93 ∗ dummy) − ϕ
6

)

=
1

1 + e−α6
 

OFinal = f((−0.98 ∗ O1) + (0.94 ∗ O2) + (1.20 ∗ O3) + (1.19 ∗ O4) + (−0.45 ∗ O5) + (0.72 ∗ O6))
= (−0.98 ∗ O1) + (0.94 ∗ O2) + (1.20 ∗ O3) + (1.19 ∗ O4) + (−0.45 ∗ O5) + (0.72 ∗ O6) 
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5. CONCLUSIONS 

By considering meteorological factors and ranking their 

importance on solar power plant output, this research 

attempted to provide an optimal model to predict solar energy 

production more accurately. This study examined the effects 

of eight variables on solar power plant output. Due to the 

increase in the number of dusty days in the country and the 

negative effect of the dust parameter on the amount of solar 

energy production, the objective was to determine the most 

effective input variable for solar energy production using a 

connection weight method. Out of the eight variables studied 

in this paper, air pressure had the least effect on solar energy 

production. Solar global irradiance on the horizontal plane, air 

temperature, and the number of sunny hours were the most 

significant variables in the present study. The amount of 

global radiation on the horizontal plane was retrieved from the 

SODA website and is not currently reported by meteorological 

stations across the received data from IRIMO. Besides, 

calculating this variable using radiation data is not difficult. 

Air temperature is the second most important variable 

affecting the amount of solar energy production. The third 

place in the Khalij-Fars power plant was the number of sunny 

hours. Day length and the number of sunny hours were two 

other important variables that we encountered in the hourly 

forecasts because they were reported once a day. In total, for 

both power plants, four parameters of solar radiation, number 

of sunny hours, temperature, and cloudiness were introduced 

as the most effective parameters in the amount of solar energy 

production. Because the frequency measurement parameter 

was the number of hours of daily sunshine, this parameter was 

only effective in daily forecasting. The Meteorological 

Organization must make arrangements for monitoring and 

measuring these parameters on an hourly basis. 

   The country currently has solar power plants connected to 

the electricity distribution network in 18 provinces. The 

provinces of Kermanshah, Markazi, Ilam, and Lorestan are 

among those with good potential for establishing solar power 

plants, but have yet to do so. In addition to helping the country 

become self-sufficient in electricity generation with the 

development of solar power plants in temperate regions and 

border launches, with proper planning, surplus production can 

be exported to neighboring countries. In the present study, 

much time was wasted trying to format meteorological data 

correctly. Several hours were spent cleaning the data because 

the data was not recorded correctly at non-airport stations. 

Due to the lack of data on some days, the data of some 

variables were replaced with the data of the SODA site. Since 

the development of renewable power plants is a good 

alternative to fossil fuel power plants, it is necessary for the 

national meteorological organization to review the structure of 

the collected data and to be as sensitive as possible in 

recording the data. Given the location of Hamedan province 

and its proximity to Iraq, the study of the effect of dust storms 

on the reduction of solar energy production is one of the 

challenging issues in predicting the amount of solar power 

generation. It is practically unprofitable to set up a 

meteorological station near each solar power plant. Predicting 

production based on calculating the factors of radiation angle, 

radiation intensity, and temperature is one of the useful 

solutions that does not require the establishment of a 

meteorological station in the solar power plant and is done 

only based on theoretical calculations and temperature data. It 

shows the importance of conducting more research to develop 

precise prediction models in future studies. 
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