Reforming of Biogas over Co- and Cu-Promoted Ni/Al2O3-ZrO2 Nanocatalysts Synthesized via Sequential Impregnation Method

Document Type: Research Article


1 Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

2 Department of Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz, Iran


Utilization of active and stable catalyst could have enormous advantages in industrial application of biogas reforming. In order to achieve this goal, the effects of Cu and Co as promoters were investigated over physical-chemical properties of Ni/Al2O3-ZrO2 catalyst in reforming of biogas. The sequential impregnation was used for preparation of catalysts. The catalysts were characterized using XRD, FESEM, BET and FTIR analysis. The XRD patterns displayed that the active phases promoters could be effective on nanoparticles dispersion. The FESEM images showed that uniformity of particles size was improved for bimetallic catalysts in comparison with Ni/Al2O3-ZrO2 catalyst but the specific surface areas had no significant change in BET analysis. Higher content of –OH structural groups on surface of Ni-Co/Al2O3-ZrO2 catalyst were proved by FTIR characterization. The performances of catalysts were assessed at atmospheric pressure, feed gas ratio of CO2/CH4= 1, GHSV=24 l/g.h and temperature ranges from 550-850°C. The results revealed Ni-Co/Al2O3-ZrO2 catalysts had the best activity. Because of optimized operating condition and application of ZrO2 as a promoter, the activities of all catalysts remained stable at 850°C for 24 h.


1.    Xu J., Zhou W., Li Z., Wang J., Ma J. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int. J. Hydrogen Energy, 2009, 34(16), 6646-6654.

2.    Avraam D.G., Halkides T.I., Liguras D.K., Bereketidou O.A., Goula M.A. An experimental and theoretical approach for the biogas steam reforming reaction. Int. J. Hydrogen Energy, 2010, 35(18), 9818-9827.

3.    Bonura G., Cannilla C., Frusteri F. Ceria-gadolinia supported NiCu catalyst: A suitable system for dry reforming of biogas to feed a solid oxide fuel cell (SOFC). Appl. Catal., B, 2012, 121-122, 135-147.

4.    Zhang J., Wang H., Dalai A. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J. Catal., 2007, 249(2), 300-310.

5.    San Jose-Alonso D., Illan-Gomez M.J., Roman-Martinez M.C. Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. Int. J. Hydrogen Energy, 2013, 38(5), 2230-2239.

6.    Therdthianwong S., Siangchin C., Therdthianwong A. Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition. Fuel Process. Technol, 2008, 89(2), 160-168.

7.    Ruckenstein E., Hu Y.H. Carbon dioxide reforming of methane over nickel alkaline earth metal oxide catalysts. Appl. Catal., A, 1995, 133, 149-161.

8.    San-Jose-Alonso D., Juan-Juan J., Illan-Gomez M.J., Roman-Martinez M.C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal., A, 2009, 371(1-2), 54-59.

9.    Pompeo F., Nichio N., Ferretti O., Resasco D. Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrogen Energy, 2005, 30(13-14), 1399-1405.

10.  Hao Z., Zhu Q., Jiang Z., Hou B., Li H. Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed. Fuel Process. Technol, 2009, 90(1), 113-121.

11.  Halliche D., Bouarab R., Cherifi O., Bettahar MM. Carbon dioxide reforming of methane on modified Ni/α-Al2O3 catalysts. Catal. Today, 1996, 29(1-4), 373-377.

12.  Pompeo F., Nichio N.N., Souza M.M.V.M., Cesar D.V., Ferretti O.A., Schmal M. Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Appl. Catal., A, 2007, 316(2), 175-183.

13.  Li X., Ai J., Li W., Li D. Ni-Co bimetallic catalyst for CH4 reforming with CO2. F. Chem. Eng. China, 2010, 4(4), 476-480.

14.  Nagaraja B.M., Bulushev D.A., Beloshapkin S., Ross J.R.H. The effect of potassium on the activity and stability of Ni-MgO-ZrO2 catalysts for the dry reforming of methane to give synthesis gas. Catal. Today, 2011, 178(1), 132-136.

15.  Foo S.Y., Cheng C.K., Nguyen T.-H., Adesina A.A. Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catal. Today, 2011, 164(1), 221-226.

16.  Li D., Chen J., Li Y. Evidence of composition deviation of metal particles of a Ni-Cu/Al2O3 catalyst during methane decomposition to COx-free hydrogen. Int. J. Hydrogen Energy, 2009, 34(1), 299-307.

17.  Roberts C.B., Elbashir N.O. An overview to ‘Advances in C1 chemistry in the year 2002’. Fuel Process. Technol, 2003, 83, 1-9.

18.  Zhang J., Wang H., Dalai A.K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Appl. Catal., A, 2008, 339(2), 121-129.

19.  Djinovic P., Crnivec O, Gasan I., Erjavec B., Pintar A. Influence of active metal loading and oxygen mobility on coke-free dry reforming of Ni-Co bimetallic catalysts. Appl. Catal., B, 2012, 125, 259-270.

20.  Vafaeian Y., Haghighi M., Aghamohammadi S. Ultrasound Assisted Dispersion of Different Amount of Ni over ZSM-5 Used as Nanostructured Catalyst for Hydrogen Production via CO2 Reforming of Methane. Energy Convers. Manage, 2013, 76, 1093-1103.

21.  Sajjadi S.M., Haghighi M., Alizadeh Eslami A., Rahmani F. Hydrogen Production via CO2-Reforming of Methane over Cu and Co Doped Ni/Al2O3 Nanocatalyst: Impregnation vs. Sol-Gel Method and Effect of Process Conditions and Promoter. J Sol-Gel Sci Technol, 2013, 67(3), 601-617.

22.  Rahemi N., Haghighi M., Babaluo A.A., Fallah Jafari M., Khorram S. Conversion of CH4/CO2 to Syngas over Ni-Co/Al2O3-ZrO2 Nanocatalyst Synthesized via Plasma Assisted Co-impregnation Method: Surface Properties and Catalytic Performance. J. Appl. Phys, 2013, 114(9), 0943011-09430110.

23.  Rahemi N., Haghighi M., Babaluo A.A., Fallah Jafari M., Estifaee P. CO2 Reforming of CH4 Over CeO2-Doped Ni/Al2O3 Nanocatalyst Treated by Non-Thermal Plasma. J. Nanosci. Nanotech, 2013, 13(7), 4896-4908.

24.  Aghamohammadi S., Haghighi M., Karimipour S. A Comparative Synthesis and Physicochemical Characterizations of Ni/Al2O3-MgO Nanocatalyst via Sequential Impregnation and Sol-Gel Methods Used for CO2 Reforming of Methane. J. Nanosci. Nanotech, 2013, 13(7), 4872-4882.

25.  Lopez P., Mondragon-Galicia G., Espinosa-Pesqueira M.E., Mendoza-Anaya D., Fernandez ME., Gomez-Cortes A., Bonifacio J., Martínez-Barrera G., Perez-Hernandez R. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies. Int. J. Hydrogen Energy, 2012, 37(11), 9018-9027.

26.  Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Appl. Catal., A, 2003, 247(1), 51-63.

27.  Lee J-H., Lee E.G., Joo O.-S., Jung K.-D. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane. Appl. Catal., A, 2004, 269, 1-6.

28.  Rahemi N., Haghighi M., Babaluo AA., Jafari MF, Estifaee P. Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4. J. Ind. Eng. Chem, 2013, 19(5), 1566-1576.

29.  Qian L., Yan Z.F. Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over supported Ni catalyst. Chin. Chem. Lett, 2003, 14, 1081-1084.

30.  Sosa Vazquez M., Reyes Rojas A., Collins-Martinez V., Lopez Ortiz A. Study of the stabilizing effect of Al2O3 and ZrO2 in mixed metal oxides of Cu for hydrogen production through REDOX cycles. Catal. Today, 2005, 107-108, 831-837.

31.  Han S.J., Bang Y., Seo J.G., Yoo J., Song I.K. Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts: Effect of Zr/Al molar ratio. Int. J. Hydrogen Energy, 2013, 38(3), 1376-1383.

32.  Amairia C., Fessi S., Ghorbel A., Rives A. Methane oxidation behaviour over sol-gel derived Pd/Al2O3-ZrO2 materials: Influence of the zirconium precursor. J. Mol. Catal. A: Chem, 2010, 332(1-2), 25-31.

33.  Seo J.G., Youn M.H., Park S., Chung J.S., Song I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/Al2O3-ZrO2 xerogel catalysts: Effect of calcination temperature of Al2O3-ZrO2 xerogel supports. Int. J. Hydrogen Energy, 2009, 34(9), 3755-3763.

34.  Tanabe K., Yamaguchi T. Acid-base bifunctional catalysis by ZrO2 and it's mixed oxides. Catal. Today, 1994(20), 185-198.

35.  Therdthianwong S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int. J. Hydrogen Energy, 2008, 33(3), 991-999.

36.  Li H., Wang J. Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process. Chem. Eng. Sci., 2004, 59(22-23), 4861-4867.

37.  Dabbagh H.A., Zamani M. Catalytic conversion of alcohols over alumina-zirconia mixed oxides: Reactivity and selectivity. Appl. Catal., A, 2011, 404(1-2), 141-148.

38.  Abbasi Z., Haghighi M., Fatehifar E., Saedy S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. J. Hazard. Mater, 2011, 186(2-3), 1445-1454.

39.  Moran-Pineda M., Castillo S., Lopez T., Gomez R., Cordero B., Novaro O. Synthesis, characterization and catalytic activity in the reduction of NO by CO on alumina-zirconia sol-gel derived mixed oxides. Appl. Catal., B, 1999, 21(2), 79-88.

40.  Ryczkowski J. IR spectroscopy in catalysis. Catal. Today, 2001, 68(4), 263-381.

41.  Sarkar D., Mohapatra D., Ray S., Bhattacharyya S., Adak S., Mitra N. Nanostructured Al2O3-ZrO2 composite synthesized by sol-gel technique: powder processing and microstructure. J. Mater. Sci, 2007, 42(5), 1847-1855.

42.  Khoshtinat Nikoo M., Amin N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol, 2011, 92(3), 678-691.

43.  Haghighi M., Sun Z.-q., Wu J.-h., Bromly J., Wee H.L., Ng E., Wang Y., Zhang D.-k. On the reaction mechanism of CO2 reforming of methane over a bed of coal char. Proceedings of the Combustion Institute, 2007, 31(2), 1983-1990.

44.  Kroll V.C.H., Swaan H.M., Mirodatos C. Methane Reforming Reaction with Carbon Dioxide Over Ni/SiO2 Catalyst: I. Deactivation Studies. J. Catal, 1996, 161, 409-422.

45.  Burghgraef H., Jansen A.P.J., Santen R.A.v. Methane activation and dehydrogenation on nickel and cobalt: a computational study. Surf. Sci, 1995, 324, 345-356.