An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Document Type: Research Article

Authors

1 Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran

2 Fuel Cell Laboratory, Green Research Centre, Iran University of Science and Technology, Tehran, Iran

Abstract

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy
conversion devices for portable and stationary applications. Traditionally, these devices were based on
perfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the most
used electrolyte membrane till now; because of its high electrochemical properties such as high proton
conductivity, good mechanical and chemical stability at fuel cell conditions, and .... However, its high
cost, reducing the performance at temperature higher than 80℃, and low humidity are the major
problems. Hydrocarbon polymers are encouraging alternative to Nafion, since they show the same or
even superior performance than Nafion at high temperature and low humidity by some modifications.
Numerous researches confirmed that Sulfonated poly ether ether ketone (SPEEK) is a promising PEM
because of its low-cost, low fuel cross over, and acceptable thermo-mechanical stabilities. However,
suitable proton conductivity in SPEEKs is depending on the high degree of sulfonation (DS), which
could deteriorate the mechanical properties of SPEEK membranes progressively at the high level. To
overcome this dilemma, various SPPEK-based hybrid/blend membranes are synthesized, and the
effects of the introduced fillers on their performance are investigated. The introduced inorganic
particles to the polymer membranes might be silica, zirconia, titania, heteropolyacids, carbon
nanotubes, and.... Enhanced proton conductivity, water retention at high temperatures, and higher
electrochemical properties are mentioned as some advantages of incorporating inorganic material into
the polymer matrix. High thermo-mechanical resistance and electrochemical activities are supplied by
inorganic moieties, while the organic parts supply plasticity and easier ductility at the low temperature.
Indeed, SPEEK blends have a good potential to alter Nafion at the high temperature and/or relatively
low humidity. In this paper, the last advances in progress of SPEEK-based organic/inorganic
composite membranes that perform truly under fuel cell conditions are discussed.

Keywords


1.     Lee, C., Mu, S., Choi, J., Baek, K.-Y., Truong, Y.B.,  Kyratzis, I.L. and Shul, Y.-G., "SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells", Journal of Materials Science, Vol. 48, No. 10, (2013), 3665–3671.

2.     Li, L., Liu, B., Liu, S., Liu, Z., Yu, Y., Jing, L. and Jiang, Z., "Synthesis of Sulfonated Fluorenyl-Containing Poly(ether ether ketone ketone)s and Their Blends with an Amino-Functionalized Poly(ether ether ketone) for Fuel Cell Applications", Macromolecular Research, Vol. 21, (2013), 719-725.

3.     Rangasamy, V.S., Thayumanasundaram, S.,  Greef, N.D.,  Seo, J.W. and  Locquet, J.-P., "Preparation and characterization of composite membranes based on sulfonated PEEK and AlPO4 for PEMFCs", Solid State Ionics, Vol. 216, (2012), 83–89.

4.     Tripathi, B.P. and Shahi, V.K., "Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Progress in Polymer Science, Vol. 36, (2011), 945–979.

5.     Hung, T.F., Liao, S.H., Li, C.Y. and Chen-Yang, Y.W., "Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion®-based self-humidifying composite membrane for proton exchange membrane fuel cell", Journal of Power Sources,  Vol. 196, (2011), 126–132.

6.     Park, C.H., Lee, C.H., Guiver, M.D. and Lee, Y.M., "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Progress in Polymer Science, Vol. 36, (2011), 1443-1498.

7.     Arigonda, M., Deshpande, A.P. and Varughese, S., "Effect of PES on the Morphology and Properties of Proton Conducting Blends with Sulfonated Poly(ether ether ketone)", Journal of Applied Polymer Science, (2013), 5100-5110.

8.     Yen, Y.-C., Ye, Y.-S.,  Cheng, C.-C., Lu, C.-H., Tsai, L.-D., Huang, J.-M., Chang, F.-C., "The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane", Polymer, Vol. 51, No. 1, (2010), p. 84-91.

9.     Díaz, M., Ortiz, A. and Ortiz, I., "Progress in the use of ionic liquids as electrolyte membranes in fuel cells", Journal of Membrane Science, Vol. 469, (2014), 379-396.

10.   Zhao, Y. and Yin, J.,"Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application", Journal of Membrane Science, Vol. 351, No. (1-2), (2010), 28-35.

11.   Sayadi, P., Rowshanzamir, S. and Parnian, M.J., "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)", Energy, Vol. 94, (2016), 292-303.

12.   Sambandam, S. and Ramani, V., "SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells", Journal of Power Sources, Vol. 170,  (2007), 259–267.

13.   Kreuer, K.D., "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", Journal of Membrane Science, Vol. 185, (2001),  29-39.

14.   Parnian, M.J., Rowshanzamir, S. and Gashoul, F., "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications", Energy, Vol. 125, (2017), 614-628.

15.   Carbone, A., Pedicini, R., Saccà, A.,  Gatto, I., Passalacqua, E., "Composite S-PEEK membranes for medium temperature polymer electrolyte fuel cells", Journal of Power Sources, Vol. 178, (2008), 661-666.

16.   Reinholdt, M.X. and Kaliaguine, S., "Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization", Langmuir, Vol. 26, No. 13, (2010), 11184–11195.

17.   Luu, D.X. and Kim, D., "sPEEK/ZPMA composite proton exchange membrane for fuel cell application", Journal of Membrane Science, Vol. 371, (2011), 248–253.

18.   Gashoul, F., Parnian, M.J. and Rowshanzamir, S., "A new study on improving the physicochemical and electrochemical properties of SPEEK nanocomposite membranes for medium temperature proton exchange membrane fuel cells using different loading of zirconium oxide nanoparticles", International Journal of Hydrogen Energy, Vol. 42, (2017), 590-602.

19.   Onuma, A., Kawaji, J., Suzuki, S., Morishima, M., Takamori, Y., Asano, N. and Tadanaga, K., "Effect of the addition of hydrated titanium oxide on proton conductivity for aromatic polymer electrolyte membrane", Solid State Ionics, Vol. 277, (2015), 72–76.

20.   Rowshanzamir, S., Peighambardoust, S.J., Parnian, M.J., Amirkhanlou, G.R.  and Rahnavard, A., "Effect of Pt-Cs2.5H0.5PW12O40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly (ether ether ketone) for proton exchange membrane fuel cell applications", International Journal of Hydrogen Energy, Vol. 40, No. 1, (2015), 549-560.

21.   Peighambardoust, S.J., Rowshanzamir , S., Hosseini, M.G., Yazdanpour, M., "Self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) and heteropolyacid supported Pt catalyst for fuel cells", International Journal of Hydrogen Energy, Vol. 36, (2011), 10940-10957.

22.   Gong, C., Zheng, X., Liu, H., Wang, G.,  Cheng, F., Zheng, G., Wen, S., Law, W.-C., Tsui, C.-P.,  Tang, C.-Y., "A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes", Journal of Power Sources, Vol. 325, (2016), 453-464.

23.   Mirzaei, F., Parnian, M.J. and Rowshanzamir, S., "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell", Energy, Vol. 138, (2017), 696-705.

24.   Esmaeilifar, A., Yazdanpour, M., Rowshanzamir, S. and  Eikani, M.H., "Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems", International Journal of Hydrogen Energy, Vol. 36, No. 9, (2011), 5500-5511.

25.   Padmavathi, R. and Sangeetha, D.L., "Synthesis and characterization of electrospun carbon nanofiber supported Pt catalyst for fuel cells", Electrochimica Acta, Vol. 112, (2013), 1-13.

26.   Du, L., Yan, X., He, G., Wu, X., Hu, Z. and Wang, Y., "SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles", International Journal of Hydrogen Energy, Vol. 37, (2012), 11853-11861.

27.   Hasani-Sadrabadi, M.M., Dashtimoghadam , E., Majedi , F.S., Kabiri, K., Solati-Hashjin, M. and  Moaddel, H., "Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell applications", Journal of Membrane Science, Vol. 365, (2010), 286–293.

28.   Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T. and Lee, J.H., "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Progress in Polymer Science, Vol. 36, (2011), 813–843.

29.   Mishra, A.K., Bose, S., Kuila, T., Kim, N.H. and  Lee, J.H., "Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells", Progress in Polymer Science, Vol. 37, No. 6, (2012), 842-869.

30.   Park, K.T., Kim, S.G., Chun, J.H., Jo, D.H., Chun, B.-H., Jang, W.I., Kang, G.B., Kim, S.H. and Lee, K.B., "Composite membranes based on a sulfonated poly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs", International Journal of Hydrogen Energy, Vol. 36, (2011), 10891-10900.

31.   Sivasankaran, A. and Sangeeth, D., "Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell", Fuel, Vol. 159, (2015), 689–696.

32.   Peighambardoust, S.J., Rowshanzamir, S. and Amjadi, M., "Review of the proton exchange membranes for fuel cell applications", International Journal of Hydrogen Energy, Vol. 35, (2010), 9349-9384.

33.   Hasani-Sadrabadi, M.M., Emami, S.H., Ghaffarian, R. and Moaddel, H., "Nanocomposite Membranes Made from Sulfonated Poly(ether ether ketone) and Montmorillonite Clay for Fuel Cell Applications", Energy & Fuels, Vol. 22, (2008), 2539–2542.

34.   Doğan, H., Inan, T.Y., Koral, M. and Kaya, M., "Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications", Applied Clay Science, Vol. 52, No. 3, (2011), 285-294.

35.   Kalappa, P. and Lee, J.-H., "Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell", Polymer International, Vol. 56, (2007), 371–375.

36.   Vona, M.L.D., Ahmed, Z., Bellitto, S.,  Lenci, A., Traversa, E.,  Licoccia, S., "SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process", Journal of Membrane Science, Vol. 296, (2007), 156–161.

37.   Hong, L.-Y., Oh, S.-Y., Matsuda, A., Lee, C.-S., Kim, D.-P., "Hydrophilic and mesoporous SiO2–TiO2–SO3H system for fuel cell membrane applications", Electrochimica Acta, Vol. 56, (2011), 3108–3114.

38.   Pătru, A., Rabis, A., Temmel, S.E., Kotz, R. and Schmidt, T.J., "Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell – Application in MEAs, performance and stability issues", Catalysis Today, Vol. 262, (2016), 161-169.

39.   Aslan, A. and Bozkurt, A., "An investigation of proton conductivity of nanocomposite membranes based on sulfated nano-titania and polymer", Solid State Ionics, Vol.239, (2013), 21-27.

40.   Licoccia, S. and Traversa, E., "Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids", Journal of Power Sources, Vol. 159, (2006), 12–20.

41.   Jun, Y., Zarrin, H., Fowler, M. and Chen, Z., "Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells", International Journal of Hydrogen Energy, Vol. 36, (2011), 6073-6081.

42.   Marani, D., Epifanio, A.D., Traversa, E., Miyayama, M. and Licoccia, S., "Titania Nanosheets(TNS)/Sulfonated Poly Ether Ether Ketone(SPEEK) Nanocomposite Proton Exchange Membranes for Fuel Cells", Chemistry of Materials, Vol. 22, No. 3, (2010), 1126–1133.

43.   Salarizadeh, P., Javanbakht, M. and Pourmahdian, S., "Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane for proton exchange membrane fuel cell application", Solid State Ionics, Vol. 281, (2015), 12–20.

44.   Salarizadeh, P., Javanbakht, M. and Pourmahdian, S., "Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites", The Royal Society of Chemistry Advances, Vol. 7, (2017), 8303–8313.

45.   Mossayebi, Z., Saririchi, T., Rowshanzamir, S. and Parnian, M.J.,  "Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells", International Journal of Hydrogen Energy, Vol. 41, No. 28, (2016), 12293-12306.

46.   Tominaka, S., Akiyama , N., Croce , F., Momma , T., Scrosati , B. and Osaka, T., "Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes", Journal of Power Sources, Vol. 185, (2008), 656–663.

47.   Tominaka, S., Momma, T., Scrosati, B. and Osaka, T., "Sulfated zirconia as a proton conductor for fuel cells: Stability to hydrolysis and influence on catalysts", Journal of Power Sources, Vol. 195, (2010), 4065–4071.

48.   Zhang, Y., Zhang, H., Zhu, X. and Bi, C.,  "Promotion of PEM Self-Humidifying Effect by Nanometer-Sized Sulfated Zirconia-Supported Pt Catalyst Hybrid with Sulfonated Poly(Ether Ether Ketone)", The Journal of Physical Chemistry B, Vol. 111, (2007), 6391-6399.

49.   Cozzi, D., et al., "Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications", Journal of Power Sources, Vol. 248, (2014), 1127-1132.

50.   Ismail, A.F., Othman, N.H. and Mustafa, A., "Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica–aluminium oxide for direct methanol fuel cell (DMFC)", Journal of Membrane Science, Vol. 329, (2009), 18–29.

51.   Zaidi, S.M.J., Mikhailenko, S.D., Robertson, G.P., Guiver, M.D. and Kaliaguine, S., "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", Journal of Membrane Science, Vol. 173, No. 10, (2000),  17-34.

52.   Oh, S.Y., Yoshida, T.,  Kawamura, G., Muto, H., Sakai, M. and Matsuda, A., "Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether–ether ketone)", Journal of Power Sources, Vol. 195, (2010), 5822–5828.

53.   Rambabu, G. and Bhat, S.D., "Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: A comparative study in DMFCs", Chemical Engineering Journal, Vol. 243, (2014), 517-525.

54.   Wen, S., Gong, C.L., Tsen, W.C., Shu, Y.C. and Tsai, F.C., "Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells", International Journal of Hydrogen Energy, Vol. 34, (2009), 8982-8991.

55.   Zhang, B., Zhuang, X.P., Cheng, B., Wang, N and Ni, Y., "Carbonaceous nanofiber-supported sulfonated poly (ether ether ketone) membranes for fuel cell applications", Materials Letters, Vol. 115, (2014), 248–251.

56.   Choi, H.-J., Jung, S.-M., Seo, J.-M., Chang, D.W.,  Dai, L. and Baek, J.-B.,  "Graphene for energy conversion and storage in fuel cells and supercapacitors", Nano Energy, Vol. 1, (2012), 534–551.

57.   Heo, Y., Im, H. and Kim, J., "The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells", Journal of Membrane Science,  Vol. 425-426, (2013), 11–22.

58.   Qiu, X., Dong, T., Ueda, M., Zhang, X. and Wang, L., "Sulfonated reduced graphene oxide as a conductive layer in sulfonated poly(ether ether ketone) nanocomposite membranes", Journal of Membrane Science, Vol. 524, (2017), 663-672.

59.   Trindade, L.G.d., Celso, F., Martini, E.M.A., Becker, M.R., Petzhold, C.L. and  de Souza, R.F., "Modification of Sulfonated Poly (ether ether ketone) Membranes by Impregnation With the Ionic Liquid 1-butyl-3-Methylimidazolium Tetrafluoroborate for Proton Exchange Membrane Fuel Cell Applications", Polymer Engineering and Science, Vol. 56, No. 9, (2016), 1037–1044.

60.   Li, D., Guo, Q., Zhai, W., Tong, J. and Tan, X., "Research on Properties of SPEEK Based Proton Exchange Membranes Doped with Ionic Liquids and Y2O3 in Different Humidity", Procedia Engineering, Vol. 36, (2012), 34 – 40.

61.   Arias, J.J.R., Dutra, J.C. and Gomes, A.d.S., "Hybrid membranes of sulfonated poly ether ether ketone, ionic liquid and organically modified montmorillonite for proton exchange membranes with enhanced ionic conductivity and ionic liquid lixiviation protection", Journal of Membrane Science, Vol. 537, (2017), 353-361.

62.   Chen, J., Guo, Q., Li, D., Tong, J. and Li, X., "Properties improvement of SPEEK based proton exchange membranes by doping of ionic liquids and Y2O3", Progress in Natural Science: Materials International, Vol. 22, No. 1, (2012), 26–30.

63.   Vona, M.L.D., D’Epifanio, A., Marani, D., Trombetta, M., Traversa, E. and Licoccia, S.,"SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments", Journal of Membrane Science, Vol. 279, No. (1-2), (2006), 186-191.

64.   Xie, L., Cho, E.-B. and Kim, D., "Sulfonated PEEK/cubic (Im3m) mesoporous benzene–silica composite membranes operable at low humidity", Solid State Ionics, Vol. 203, (2011), 1–8.

65.   Cho, E.-B., Luu, D.X. and Kim, D., "Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly(ether ether ketone) composite membranes for fuel cell application", Journal of Membrane Science,  Vol. 351, (2010), 58–64.

66.   Vona, M.L.D., Sgreccia, E., Donnadio, A., Casciola, M., Chailan, J.F., Auer, G. and Knauth, P., "Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2", Journal of Membrane Science, Vol. 369, (2011), 536–544.

67.   Zhang, Y., Zhang, H., Zhai , Y., Zhu, X. and Bi, C., "Investigation of self-humidifying membranes based on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications", Journal of Power Sources,  Vol. 168, (2007), 323–329.