The Effect of Aperture Size on the Cavity Performance of Solar Thermoelectric Generator

Document Type: Research Article


Department of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.


   In this manuscript, a solar cavity packed with thermoelectric generator modules is investigated numerically. The hot plate of TEG modules make the inner surface of the cube, and the cold plate is outside of the cavity, under natural convection. The TEG modules are electrically in series. The solution algorithm using the equations of heat transfer and generated power of TEG modules is developed via MATLAB and simulated under various non-concentrated irradiation levels. The generated power variation in solar thermoelectric cavity shows that as the solar irradiance rises, the generated power increases at a growing rate. The radiation varies from 700 to 1200 W/m2, and the generated power increases from 0.2 mW to 10 mW for side TEGs and up to 30 mW for bottom side TEGs. Studying the effect of aperture size shows that, although the generated power of fully open cavity is 2.25 times higher than generated power in 5×5 cm2 aperture size cavity but its efficiency is 50% lower than small aperture cavity. Heat transfer analysis of cavity depicts the 91% of heat transferred by conduction in cube surfaces and, only 6% and 3% of input energy are lost by re-radiation and convection through the aperture, respectively.


1.     Champier, D., "Thermoelectric generators: A review of applications", Energy Conversion and Management, Vol. 140, (2017), 167–181.

2.     Rowe, DM. CRC Handbook of thermoelectric,  NY, USA: CRC Press, (1995).

3.     Min, G. and Rowe, D.M., Thermoelectric Handbook Macro to Nano, CRC Press, (2006).

4.     Goldsmid, H.J., "Theory of Thermoelectric Refrigeration and Generation", Introduction to Thermoelectricity, Vol. 121, (2010), 7-21.

5.     Hun, C., Li, Z. and Dou S.X., "Recent progress in thermoelectric materials", Chinese Science Bulletin, Vol. 59, (2014), 2073-2091.

6.     Li, G., Shittu, S., Diallo, T.M.O., Yu, M., Zhao, X. and Ji, J., "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation", Energy, Vol. 158, (2018), 41-58.[a1] 

7.     Kurosaki, K., Matsuda, T., Uno, S., Kobayashi, S. and Yamanaka, S., "Thermoelectric properties of BaUO3", Journal of Alloys and Compounds, Vol. 319, (2001), 271–275.

8.     Zhao, L. D., Lo, S., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P. and Kanatzidis, M.G., "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", Nature, Vol. 508, (2014), 373-377.

9.     Kim, T.S., Kim, I.S., Kim, T.K., Hong, S.J. and Chun, B.S., "Thermoelectric properties of p- type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing", Materials Science and Engineering, Vol. 90, (2002), 42–46.

10.   Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’Quinn, B., "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, Vol. 413, (2001), 597–602.

11.   Kim, G.H., Shao, L., Zhang, K. and Pipe, K.P., "Engineered doping of organic semiconductors for enhanced thermoelectric efficiency", Nature Materials, Vol.12, (2013), 719–723.

12.   Telkes, M., "Solar thermoelectric generators", Journal of Applied Physics, Vol. 25, (1954), 765-777.

13.   Sundarraj, P., Maity, D., Roy, S.S. and Taylor, R.A., "Recent advances in thermoelectric materials and solar thermoelectric generators–a critical review", RSC Advances, Vol. 4, (2014), 46860-46874.

14.   Kraemer, D., Poudel, B., Feng, H.-P., Caylor, J.C.,  Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z. and Chen, G., "High-performance flat-panel solar thermoelectric generators with high thermal concentration", Natural Material, Vol. 10, (2011), 532–538[a2] .

15.   Baranowski, L.L., Snyder, G.J. and Toberer, E.S., "Concentrated solar thermoelectric generators", Energy & Environmental Science, Vol. 5, (2012), 9055–9067[a3] .

16.   Chen, W.H., Wang, C.C., Hung, C.I., Yang, C.C. and Juang, R.C., "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator", Energy, Vol. 64, (2014), 287–297[a4] .

17.   Kossyvakis, D.N., Vossou, C.G., Provatidis, C.G. and Hristoforou, E.V., "Computational analysis and performance optimization of a solar thermoelectric generator", Renewable Energy, Vol. 81, (2015), 150–161[a5] .

18.   He, W., Su, Y., Riffat, S.B., Hou, J. and Ji, J., "Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit", Applied Energy, Vol. 88, (2011), 5083–5089[a6] .

19.   He, W., Su, Y., Wang, Y.Q., Riffat, S.B. and Ji, J., "A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors", Renewable Energy, Vol. 37, (2012), 142–149[a7] .

20.   Chávez-Urbiola, E.A., Vorobiev, Y. and Bulat, L.P., "Solar hybrid systems with thermoelectric generators", Solar Energy, Vol. 86, (2012), 369–378[a8] .

21.   Chávez Urbiola, E.A. and Vorobiev Y., "Investigation of solar hybrid electric/thermal system with radiation concentrator and thermoelectric generator", International Journal of Photoenergy, Vol. 2013, (2018), 704087[a9] .

22.   Soltani, S., Kasaeian, A., Sarrafha, H. and Wen, D., "An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application", Solar Energy, Vol. 155, (2017), 1033-1043[a10] .

23.   Willars-Rodríguez[a11] , F.J., Chávez-Urbiola, E.A., Vorobiev, P. and Vorobiev, V., "Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric Generators", International Journal of Energy Research, Vol. 3, (2017), 377–388.

24.   Zhang, J., Xuan, Y. and Yang, L., "A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell", International Journal of Energy Research, Vol. 10, (2016), 1400-1409.

25.   Suter, C., Tomes, P., Weidenkaff, A. and Seinfeld, A., "Heat transfer analysis and geometrical optimization of thermoelectric converters driven by concentrated solar radiation", Materials, Vol. 3, (2010), 2735–2752.

26.   Suter, C., Tomes, P., Weidenkaff, A. and Seinfeld, A., "A solar cavity-receiver packed with an array of thermoelectric converter modules", Solar Energy, Vol. 85, (2011), 1511–1518.

27.   Howell, J., Siegel, R. and Pinar, M., Thermal Radiation Heat Transfer, Fifth ed. 222- 248, New York:  Taylor & Francis Inc.; (2002).

28.   Catalog of Radiation Heat Transfer Configuration Factors, summary and conclusions; (2010), http://[a12] .

29.   Hinojosa, J.F., Alvarez, G. and Estrada, C.A., "Three-dimensional numerical simulation of the natural convection in an open tilted cubic cavity", Revista Mexicana de Física, Vol. 52, No. 2, (2006), 111-119.

30.  Properties, D.I.F.P., DIPPR Project 801 - [a1] Full Version: Design Institute for Physical Property Research/AIChE; (2010).