Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Document Type: Research Article

Authors

Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran

Abstract

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtained by minimizing the prediction errors of experimental capacity loss for each charge/discharge cycle at 25 oC, 35 oC, and 45 oC.The optimum values of the model parameters are obtained using genetic algorithm, one of the optimization tools in Matlab software. The model accurately predicts the capacity loss of lithium-ion battery for more charge and discharge cycles at 25 °C with an average error of 4 %. The mentioned cycles are used only to validate the prediction.

Keywords

Main Subjects


1.     Yuchen, S., Datong, L., Yandong, H., Jinxiang, Y. and Yu, P., "Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm”, Chinese Journal of Aeronautics, Vol. 31, (2018), 31-40. (Doi: 10.1016/j.cja.2017.11.010).

2.     Dehghan, F., Mohammadi-Manesh, H. and Loghavi, M.M., "Investigation of lithium-ion diffusion in LiCoPO4 cathode material by molecular dynamics simulation", Journal of Structural Chemistry,Vol. 60, (2019), 727-735. (Doi: 10.1134/S0022476619050044).

3.     Lee, S., Cho, Y., Song, H.K., Lee, K.T. and Cho, J., "Carbon‐coated single‐crystal LiMn2O4 nanoparticle clusters as cathode material for high‐energy and high‐power lithium‐ion batteries", Angewandte Chemie, Vol. 124, (2012), 8878-8882. (Doi: 10.1002/anie.201203581).

4.     Sarshar, M., Zarei-Jelyani, M. and Babaiee, M., "Application of semi empirical and multiphysics models in simulating lithium ion battery operation", Proceedings of 10th International Chemical Engineering Congress and Exhibition, Isfahan, Iran, (2018).

7.     Zarei-Jelyani, M., Sarshar, M., Babaiee, M. and Ghasemi, A., "Experimental study and empirical modeling of capacity loss in space lithium-ion battery", Journal of Modeling in Engineering, Vol. 55, (2018), 3-3. (Doi: 10.22075/jme.2018.13281.1304).

8.     Yoshida, T., Takahashi, M., Morikawa, S., Ihara, C., Katsukawa, H., Shiratsuchi, T., and Yamaki, J.I., "Degradation mechanism and life prediction of lithium-ion batteries", Journal of The Electrochemical Society, Vol. 153, (2006), A576-A582. (Doi: 10.1149/1.2162467).

9.     Cui, Y., Du, C., Yin, G., Gao, Y., Zhang, L., Guan, T., Yang, L. and Wang, F., "Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge", Journal of Power Sources, Vol. 279, (2015), 123-132. (Doi: 10.1016/j.jpowsour. 2015.01.003).

10.   Zarei-Jelyani, M., Sarshar, M., Babaiee, M., Ghasemi, A. and Eqra, R., "Lifetime prediction of lithium-ion battery", Proceedings of 3rd Symposium of Scientific and Technical Achievements of ISRC, Tehran, Iran, (2017).

12.   Fellner, J., Loeber, G., Vukson, S. and Riepenhoff, C., "Lithium-ion testing for spacecraft applications", Journal of Power Sources, Vol. 119, (2003), 911-913. (Doi: 10.1016/S0378-7753(03)00222-2).

13.   Santhanagopalan, S., Zhang, Q., Kumaresan, K. and White, R.E., "Parameter estimation and life modeling of lithium-ion cells", Journal of The Electrochemical Society, Vol. 155, (2008), A345-A353. (Doi: 10.1149/1.2839630).

14.   Safari, M., Morcrette, M., Teyssot, A. and Delacourt, C., "Multimodal physics-based aging model for life prediction of Li-ion batteries", Journal of The Electrochemical Society, Vol. 156, (2009), A145-A153. (Doi: 10.1149/1.3043429).

16.   Hu, M., Wang, J., Fu, C., Qin, D. and Xie, S., "Study on cycle-life prediction model of lithium-ion battery for electric vehicles", International Journal of Electrochemical Science, Vol. 11, (2016), 577-589.

17.           Zhou, Y., Huang, M., Chen, Y. and Tao, Y., "A novel health indicator for on-line lithium-ion batteries remaining useful life prediction", Journal of Power Sources, Vol. 321, (2016), 1-10. (Doi: 10.1016/j.jpowsour.2016.04.119).