Document Type : Research Article


Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran.


In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper current collector, three binders such as PVDF, MSBR, and CMC+SBR were used to prepare the anode electrodes. The mechanical and electrochemical tests were conducted for different MCMB electrodes. The results show that the water-based binders (CMC+SBR and MSBR) made better adhesion properties for the coating on the current collector in comparison with the organic solvent-based binder (PVDF). MCMB anode fabricated with CMC+SBR binder shows the highest discharge capacity and the best rate performance at various C-rates of 0.2C, 0.5C, and 1C that result in the brilliant electrochemical performance. Therefore, artificial graphite anode materials using cheap aqueous CMC+SBR binder instead of toxic solvent like NMP and expensive PVDF improve electrochemical property and reduce the cost of LIBs.


Main Subjects

1.     Zarei-Jelyani, M., Rashid-Nadimi, S. and Asghari, S., "Treated carbon felt as electrode material in vanadium redox flow batteries: A study of the use of carbon nanotubes as electrocatalyst", Journal of Solid State Electrochemistry, Vol. 21, (2017), 69-79. (DOI: 10.1007/s10008-016-3336-y).
3.     Zarei-Jelyani, M., Babaiee, M., Ghasemi, A. and Eqra, R., "Investigation of hydroxylated carbon felt electrode in a vanadium redox flow battery used optimized supporting electrolyte", Journal of Renewable Energy and Environment (JREE), Vol. 3, No. 4, (2016), 54-59.
4.     Zarei-Jelyani, M. and Rashid-Nadimi, S., "Designing and fabrication of vanadium redox flow battery mono-cell using carbon nanotube as the electro-catalyst", Proceedings of 11th Iranian Biennial Elctrochemistry Seminar, (2014).
5.     Loghavi, M.M., Mohammadi-Manesh, H., Eqra, R., Ghasemi, A. and Babaiee, M., "DFT study of adsorption of lithium on Si, Ge-doped divacancy defected graphene as anode material of Li-ion battery", Physical Chemistry Research, Vol. 6, (2018), 871-878. (DOI: 10.22036/pcr.2018.148943.1543).
6.     Sarshar, M., Zarei-Jelyani, M. and Babaei, M., "Application of semi empirical and multiphysics models in simulating lithium ion battery operation", Proceedings of The 10th International Chemical Engineering Congress and Exhibition, Isfahan, Iran, (2018).
7.     Loghavi, M.M., Askari, M., Babaiee, M., and Ghasemi, A., "Improvement of the cyclability of Li-ion battery cathode using a chemical-modified current collector", Journal of Electroanalytical Chemistry, Vol. 841, (2019), 107-110. (DOI: 10.1016/j.jelechem. 2019.04.037).
8.     Nitta, N., Wu, F., Lee, J.T. and Yushin,G., "Li-ion battery materials: Present and future", Materials Today, Vol. 18, (2015), 252-264. (DOI: 10.1016/j.mattod.2014.10.040).
9.     Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R. and Capiglia, C., "Review on recent progress of nanostructured anode materials for Li-ion batteries", Journal of Power Sources,. Vol. 257, (2014), 421-443. (DOI: 10.1016/j.jpowsour.2013.11.103).
10.   Nitta, N. and Yushin, G., "High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles", Particle & Particle Systems Characterization, Vol. 31, (2014), 317-336. (DOI: 10.1002/ppsc.201300231).
11.   Aravindan, V., Lee, Y.S. and Madhavi, S., "Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes", Advanced Energy Materials, Vol. 5, (2015), 1402225. (DOI: 10.1002/aenm.201402225).
12.   Chen, J., Liu,, J., Qi, Y., Sun, T. and Li, X., "Unveiling the roles of binder in the mechanical integrity of electrodes for lithium-ion batteries", Journal of The Electrochemical Society, Vol. 160, (2013), A1502-A1509. (DOI: 10.1149/2.088309jes).
13.   Chou, S.-L., Pan, Y., Wang, J.-Z., Liu, H.-K.and Dou, S.-X., "Small things make a big difference: binder effects on the performance of Li and Na batteries", Physical Chemistry Chemical Physics, Vol. 16, (2014), 20347-20359. (DOI: 10.1039/C4CP02475C).
16.   Lux, S.F., Schappacher, F., Balducci, A., Passerini, S. and Winter, M., "Low cost, environmentally benign binders for lithium-ion batteries", Journal of the Electrochemical Society, Vol. 157, (2010), A320-A325. (DOI: 10.1149/1.3291976).
17.   Wang, Z., Dupré, N., Gaillot, A.-C., Lestriez, B., Martin, J.-F., Daniel, L., Patoux, S. and Guyomard, D., "CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries", Electrochimica acta, Vol. 62, (2012), 77-83. (DOI: 10.1016/j.electacta.2011.11.094).
18.   Kvasha, A., Urdampilleta, I., Meatza, I.D., Bengoechea, M., Blázquez, J.A., Yate, L., Miguel, O. and Grande, H.-J., "Towards high durable lithium ion batteries with waterborne LiFePO4 electrodes", Electrochimica Acta, Vol. 215, (2016), 238-246. (DOI: 10.1016/j.electacta.2016.08.021).
20.   Sreelakshmi, K.V., Sasi, S., Balakrishnan, A., Sivakumar, N., Sreekumar Nair, A., Nair, S.V. and Subramanian, K.R.V., "Hybrid composites of LiMn2O4–Graphene as rechargeable electrodes in energy storage devices", Energy Technology, Vol. 2, (2014), 257-262. (DOI: 10.1002/ente.201300120).
21.   Shim, J., Kostecki, R., Richardson, T., Song, X. and Striebel, K.A., "Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature", Journal of Power Sources, Vol. 112, (2002), 222-230. (DOI: 10.1016/S0378-7753(02)00363-4).
22.   Mazouzi, D., Lestriez, B., Roué, L. and Guyomard, D., "Silicon composite electrode with high capacity and long cycle life", Electrochemical and Solid-State Letters, Vol. 12, (2009), A215-A218. (DOI: 10.1149/1.3212894).
23.   Li, J.T., Wu, Z.Y., Lu, Y.Q., Zhou, Y., Huang, Q.S., Huang, L. and Sun, S.G., "Water soluble binder, an electrochemical performance booster for electrode materials with high energy density”, Advanced Energy Materials, Vol. 7, (2017), 1701185. (DOI: 10.1002/aenm.201701185).
24.   Lee, J.H., Lee, S., Paik, U. and Choi, Y.M., “Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance", Journal of Power Sources, Vol. 147, (2005), 249-255. (DOI: 10.1016/j.jpowsour.2005.01.022).
25.   Buqa, H., Holzapfel, M., Krumeich, F., Veit, C. and Novák, P., "Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries", Journal of Power Sources, Vol. 161, (2006), 617-622. (DOI: 10.1016/j.jpowsour.2006.03.073).
26.   Zhang, T., de Meatza, I., Qi, X. and Paillard, E., "Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder", Journal of Power Sources, Vol. 356, (2017), 97-102. (DOI: 10.1016/j.jpowsour.2017.04.073).