Document Type : Research Article

Author

Department of Mechanical Engineering, Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, Postal Code: 3313193685, Tehran, Iran.

Abstract

Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasification has been explained and shown able to supply the required fuel to the energy generators to compensate for the consumption consequences of fossil fuels. In this system, a molten carbonate fuel cell generates electricity from syngas produced by biomass gasification. In addition, a gas cleaning process prepares adequate treatment before consumption in the fuel cell. Furthermore, for the justification of this system as a combined heat and power (CHP) cycle, a considerable amount of produced heat in the proposed process generates power in GT and ST bottoming cycles. Due to the energy targeting, modeling and simulation of the presented system were fulfilled by the Cycle-Tempo software, and the results showed about 42 MW output power and total efficiency of around 83 %. Further to that, parametric studies represented the durability of the generated power against ambient temperature variations. Finally, changes in total power and efficiency due to the fluctuation of the moisture content of biomass, pressure ratio, and inlet temperature of GT have also been demonstrated.

Keywords

Main Subjects

1.     Ozgoli, H.A., "Exergy analysis of a molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle", Iranian Journal of Hydrogen & Fuel Cell, Vol. 3, (2017), 267-279. (DOI: 10.22104/ijhfc.2017.480).
2.     Ozgoli, H.A., Ghadamian, H., Roshandel, R. and Moghadasi, M., "Alternative biomass fuels consideration exergy and power analysis for a hybrid system includes PSOFC and GT integration", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 37, (2015), 1962-1970. (DOI: 10.1080/15567036.2012.654898).
3.     Ozgoli, H.A., Ghadamian, H. and Farzaneh, H., "Energy efficiency improvement analysis considering environmental aspects in regard to biomass gasification PSOFC-GT power generation system", Procedia Environmental Sciences, Vol. 17, (2013), 831-841. (DOI: 10.1016/j.proenv.2013.02.101).
4.     Ghadamian, H., Hamidi, A.A., Farzaneh, H. and Ozgoli, H.A., "Thermo-economic analysis of absorption air cooling system for pressurized solid oxide fuel cell/gas turbine cycle", Journal of Renewable and sustainable Energy, Vol. 4, (2012) 1-14. (DOI: 10.1063/1.4742336).
5.     Ozgoli, H.A., Ghadamian, H. and Hamidi, A.A., "Modeling SOFC & GT integrated-cycle power system with energy consumption minimizing target to improve comprehensive cycle performance (Applied in pulp and paper, case studied)", International Journal of Engineering Technology, Vol. 1, (2012), 1-6. (DOI: 10.5176/2251-3701_1.1.1).
6.     Ozgoli, H.A., Moghadasi, M., Farhani, F. and Sadigh, M., "Modeling and simulation of an integrated gasification SOFC–CHAT cycle to improve power and efficiency", Environmental Progress & Sustainable Energy, Vol. 36, (2017), 610-618. (DOI: 10.1002/ep.12487).
7.     De Simon, G., Parodi F., Fermeglia, M. and Taccani, R., "Simulation of process for electrical energy production based on molten carbonate fuel cells", Journal of Power Sources, Vol. 115, (2003), 210-218. (DOI: 10.1016/S0378-7753(02)00728-0).
8.     Carapellucci, R., Saia, R. and Giordano, L., "Study of gas-steam combined cycle power plants integrated with MCFC for carbon dioxide capture”, Energy Procedia, Vol. 45, (2014), 1155-1164. (DOI: 10.1016/j.egypro.2014.01.121).
9.     Rashidi, R., Berg P. and Dincer, I., "Performance investigation of a combined MCFC system", International Journal of Hydrogen Energy, Vol. 34, (2009), 4395-4405. (DOI: 10.1016/j.ijhydene.2009.03.038).
10.   Campanari, S., Manzolini, G. and Chiesa, P., "Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming", Applied Energy, Vol. 112, (2013), 772-783. (DOI: 10.1016/j.apenergy.2013.01.045).
11.   Appleby, A.J. and Foulkes, F.R., Fuel cell handbook, Van Nostrand Reinhold, New York, US, (1989). (ISBN: 0442319266).
12.   Lies, E.A. and Gemmen, R.S., "Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system", Journal of Engineering for Gas Turbines and Power, Vol. 127, (2005), 86-90. (DOI: 10.1115/1.1788689).
13.   Agnew, G.D., Moritz, R.R., Berns C., Spangler, A., Tarnowski, O. and Bozzolo, M., "A unique solution to low cost SOFC hybrid power plant", ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, 2, Atlanta, Georgia, USA, (June 16-19 2003). (DOI: 10.1115/GT2003-38944).
14.   Proell, T., Rauch, R., Aichernig, C. and Hofbauer, H., "Coupling of biomass steam gasification and an SOFC-gas turbine hybrid system for highly efficient electricity generation", ASME Turbo Expo 2004: Power for Land, Sea, and Air, 7, Vienna, Austria, June (14-17 2004). DOI: 10.1115/GT2004-53900).
15.   Veyo, S.E., Vora, S.D., Litzinger, K.P. and Lundberg, W.L., "Status of pressurized SOFC/gas turbine power system development at Siemens Westinghouse", ASME Turbo Expo 2002: Power for Land, Sea, and Air, 1, Amsterdam, The Netherlands, (June 3-6 2002). (DOI: 10.1115/GT2002-30670).
16.   Ghezel-Ayagh, H., Daly, J.M. and Wang, Z.H., "Advances in direct fuel cell/gas turbine power plants", ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, 2, Atlanta, Georgia, USA, (June 16-19 2003). (DOI: 10.1115/GT2003-38941).
17.   Agnew, G.D., Townsend J., Moritz, R.R., Bozzolo, M., Berenyi, S. and Duge, R., "Progress in the development of a low cost 1MW SOFC hybrid", ASME Turbo Expo 2004: Power for Land, Sea, and Air, 7, Vienna, Austria, (June 14-17). (DOI: 10.1115/GT2004-53350).
18.   Azegami, O., "MCFC/MGT hybrid generation system", Special issue Core Technology of Micro Gas Turbine for Cogeneration System, R&D Review of Toyota CRDL, 41, (2006), 36-43.
19.   Steinfeld, G., Maru, H.C. and Sanderson, R.A., "High efficiency carbonate fuel cell/turbine hybrid power cycles", Energy Conversion Engineering Conference, IECEC 96, Proceedings of the 31st Intersociety, (1996),454-457. (DOI: 10.1109/IECEC.1996.553865).
20.   Huang, H., Li, J., He, Z., Zeng, T., Kobayashi, N. and Kubota, M., "Performance analysis of a MCFC/MGT hybrid power system bi-fueled by city gas and biogas", Energies, Vol. 8, (2015), 5661-5677. (DOI: 10.3390/en8065661).
21.   Lunghi, P., Bove, R. and Desideri, U., "Analysis and optimization of hybrid MCFC gas turbines plants", Journal of Power Sources, Vol. 118, (2003), 108-117. (DOI: 10.1016/S0378-7753(03)00068-5).
22.   Jurado, F. and Valverde, M., "Combined molten carbonate fuel cell and gas turbine systems for efficient power and heat generation using biomass", Electric Power Systems Research, Vol. 65, (2003), 223-232. (DOI: 10.1016/S0378-7796(03)00026-9).
23.   Morita, H., Yoshiba, F., Woudstra, N., Hemmes, K. and Spliethoff, H., "Feasibility study of wood biomass gasification/molten carbonate fuel cell power system-comparative characterization of fuel cell and gas turbine systems", Journal of Power Sources, Vol. 138, (2004), 31-40. (DOI: j.jpowsour.2004.06.018).
24.   Agll, A.A., Hamad, Y.M., Hamad, T.A., Thomas, M., Bapat, S., Martin, K.B. and Sheffield, J.W., "Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis", Applied Thermal Engineering, Vol. 59, (2013), 634-638. (DOI: j.applthermaleng.2013.06.030).
25.   Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B. and Sheffield, J.W., "Study of a molten carbonate fuel cell combined heat, hydrogen and power system", Energy, Vol. 75, (2014), 579-588. (DOI: 10.1016/j.energy.2014.08.020).
26.   Baratieri, M., Baggio, P., Bosio, B., Grigiante, M. and Longo, G.A., "The use of biomass syngas in ic engines and ccgt plants: A comparative analysis", Applied Thermal Engineering, Vol. 29, (2010), 3309-3318. (DOI: j.applthermaleng.2009.05.003).
27.   Greppi, P., Bosio, B. and Arato, E., "Feasibility of the integration of a molten carbonate fuel-cell system and an integrated gasification combined cycle", International Journal of Hydrogen Energy, Vol. 34, (2009), 8664-8669. (DOI: 10.1016/j.ijhydene.2009.08.012).
28.   Fermeglia, M., De Simon, G. and Donolo, G., "Energy production from biomass gasification by molten carbonate fuel cells: Process simulation", Hydrogen Age: when, where, why (H2www), Palermo, Italy, (2005).
29.   Roy, D., Samanta, S. and Ghosh, S., "Energetic, exergetic and economic (3E) investigation of biomass gasification based power generation system employing molten carbonate fuel cell (MCFC), indirectly heated air turbine and an organic Rankine cycle", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 112, (2019), 1-18, (DOI: 10.1007/s40430-019-1614-1).
30.   Zhang, X., "Current status of stationary fuel cells for coal power generation", Clean Energy, Vol. 2, (2018), 126-139, (DOI: 10.1093/ce/zky012).
31.   Kawase, M., "Durability and robustness of tubular molten carbonate fuel cells", Journal of Power Sources, Vol. 371, (2017), 106-111, (DOI: 10.1016/j.jpowsour.2017.10.024).
32.   Advanced simulation for power and total energy systems (ASIMPTOTE), Delft, Netherlands, (http://www.asimptote.nl/ software/cycle-tempo/).
33.   Abuadala, A. and Dincer, I., "Exergo-economic analysis of a hybrid system based on steam biomass gasification products for hydrogen production", International Journal of Hydrogen Energy, Vol. 36, (2011), 12780-12793. (DOI: 10.1016/j.ijhydene.2011.07.067).
34.   Toonssen, R., Woudstra, N. and Verkooijen, A.H.M., "Reference system for a power plant based on biomass gasification and SOFC", Proceedings of The 8th European Solid Oxide Fuel Cell Forum, Luzern, Switzerland, (July 1 2008).
35.   Bolhar-Nordenkampf, M., Bosch, K., Rauch, R., Kaiser, S., Tremmel, H., Aichernig, C. and Hofbauer, H., "Scale-up of a 100kWth pilot FICFB-gasifier to a 8 MWth FICFB gasifier demonstration plant in Güssing (Austria)", Proceedings of 1st International Ukrainian Conference on Bimass for Energy, Kiev, Ukraine, (2002).
36.   Hofbauer, H., Rauch, R., Loeffler, G., Kaiser, S., Fercher, E. and Tremmel, H., "Six years experience with the FICFB-gasification process", Proceedings of 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, Netherlands, (2002).
37.   Xu, G., Murakami, T., Suda, T., Matsuzawa, Y. and Tani, H., "The superior technical choice for dual fluidized bed gasification", Industrial and Engineering Chemistry Research, Vol. 45, (2006), 2281–2286. (DOI: 10.1021/ie051099r).
38.   Miccio, F., Ruoppolo, G., Kalisz, S., Andersen, L., Morgan, T.J. and Baxter, D., "Combined gasification of coal and biomass in internal circulating fluidized bed", Fuel Processing Technology, Vol. 95, (2012), 45–54. (DOI: 10.1016/j.fuproc.2011.11.008).
39.   Duret, A., Friedli, C. and Maréchal, F., "Process design of synthetic natural gas (SNG) production using wood gasification", Journal of Cleaner Production, Vol. 13, (2005), 1434-1446, (DOI: 10.1016/j.jclepro.2005.04.009).
40.   Toonssen, R., Sollai, S., Aravind, P.V., Woudstra, N. and Verkooijen, A.H.M., "Alternative system designs of biomass gasification SOFC/GT hybrid systems", International Journal of Hydrogen Energy, Vol. 36, (2011), 10414-10425. (DOI: 10.1016/j.ijhydene.2010.06.069).
41.   Basu, P., Biomass gasification and pyrolysis practical design, Published by Elsevier Inc., (2010). (DOI: 10.1016/B978-0-12-374988-8.00006-4).
42.   Maxim, V., Cormos, C.C., Cormos, A.M. and Agachi, S., "Mathematical modeling and simulation of gasification processes with carbon capture and storage (CCS) for energy vectors poly-generation", Proceedings of 20th European Symposium on Computer Aided Process Engineering – ESCAPE20, Ischia, Naples, Italy, (6-9 June 2010).
43.   Bang-Møller, C. and Rokni, M., "Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems", Energy Conversion and Managements, Vol. 51, (2010), 2330-2339. (DOI: 10.1016/j.enconman.2010.04.006).
44.   Singhal, S.C., "Advances in solid oxide fuel cell technology", Solid State Ionics, Vol. 135, (2000), 305-313. (DOI: 10.1016/S0167-2738(00)00452-5).
45.   EG & G Techincal Services, Fuel Cell Handbook, Morgantown: Nation Energy Technology Laboratory, (2004).
46.   Morita, H., Komoda, M., Mugikura, Y., Izaki, Y., Watanabe, T., Masuda, Y. and Matsuyama, T., "Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte", Journal of Power Sources, Vol. 112, (2002), 509-518. (DOI: 10.1016/S0378-7753(02)00468-8).
47.   Razak, A.M.Y., Industrial gas turbines performance and operability, Woodhead Publishing Ltd., Oxford, UK, (2007).
48.   Bloch, H.P. and Singh, M., Steam turbines: Design, application, and re-rating (Mechanical engineering), McGraw-Hill Education, Second Edition, US, (2008).
50.   Hughes, W.E.M. and Larson, E.D., "Effect of fuel moisture content on biomass-IGCC performance", Journal of Engineering for Gas Turbines and Power, Vol. 120, (1998), 455-459. (DOI: 10.1115/1.2818166).
51    Van der Drift, A., Van Doorn, J. and Vermeulen, J.W., "Ten residual biomass fuels for circulating fluidized-bed gasification", Biomass and Bioenergy, Vol. 20, (2001), 45-56, (DOI: 10.1016/S0961-9534(00)00045-3).
52.   Cummer, K.R. and Brown, R.C., "Ancillary equipment for biomass gasification”, Biomass and Bioenergy, Vol. 23, (2002), 113-128. (DOI: 10.1016/S0961-9534(02)00038-7).
53.   De Souza-Santos, M.L., "A new version of CSFB, Comprehensive simulator for fluidized bed equipment", Fuel, Vol. 86, (2007), 1684-1709. (DOI: 10.1016/j.fuel.2006.12.001).