Document Type : Research Article

Authors

Mechanical Engineering Faculty, K.N. Toosi University of Technology, Tehran, Iran

Abstract

Converting chemical energy into electricity is done by an electro-chemical device known as a fuel cell. Thermal stress is caused at high operating temperature between 700 oC to 1000 oC of SOFC. Thermal stress causes gas escape, structure variability, crack initiation, crack propagation, and cease operation of the SOFC before its lifetime. The aim of this study is to present a method that predicts the initiation of cracks in an anisotropic porous planar SOFC. The temperature and stress distribution are calculated. The code uses the generated data, stress intensity factor, and the J-integral of the materials to predict the initiation of the crack inside the porous anode and cathode. The results show that the highest thermal stress occurs at the upper corners of cathode and at the lower corners of the anode. In addition, the thickness of cathode electrode on the left side is increased by 1.5 %. Finally, the crack initiation occurs on the left side between the upper and lower corners of the cathode.

Keywords

Main Subjects

1.     Hoogers, G., Fuel cell technology handbook, CRC Press, Boca Raton, (2003), 200-230.
2.     Hibino, T., Hashimoto, A., Yano, M., Yoshida, S.I. and Sano, M., "High performance anodes for SOFCs operating in methane-air mixture at reduced temperatures", Journal of Electrochemistry Society, Vol. 149, (2002), 133-136. (Doi: 10.1149/1.1430226).
3.     Zhu, H., Kee, R.J., Janardhanan, V.M., Deutschmann, O. and Goodwin, D.G.,"Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells", Journal of Electrochemistry Society, Vol. 152, (2005), 2427-2440. (Doi: 10.1149/1.2116607).
4.     Greco, F., Frandsen, H.L., Nakajo, A., Madsen, M.F. and Van herle, J., "Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack", Journal of The European Ceramic Society, Vol. 34, (2014), 2695-2704. (Doi: 10.1016/j.jeurceramsoc.2013.12.055).
5.     M. Peksen, "Numerical thermomechanical modelling of solid oxide fuel cells", Progress in Energy and Combustion Science, Vol. 48, (2015), 1-20. (Doi: 210.1002/9783527650248.ch27).
6.     Boccaccini, D.N., Sevecek, O., Frandsen, H.L., Dlouhy, I., Molin, S., Cannio, M., Hjelm, J. and Hendriksen P.V, "Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector-electrode interfaces", Material Letters, Vol. 162, (2016), 250-253. (Doi:1 0.1016/j.matlet.2015.07.137).
7.     Xu, M., Li, T., Yang, M. and Anderson, M., "Solid oxide fuel cell interconnect design optimization considering the thermal stresses", Science Bulletin, Vol. 61, No. 17, (2016), 1333-1344. (Doi: 10.1007/s11434-016-1146-3).
8.     Fleischhauer, F., Terner, M., Bermejo, R., Danzer, R., Mai, A., Graule, T. and Kuebler, J., "Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells", Journal of Power Sources, Vol. 275, (2015), 217-226. (Doi: 10.1016/j.jpowsour.2014.10.083).
9.     Kamvar, M., Ghasemi, M. and Rezaei, M., "Effect of catalyst layer configuration on single chamber solid oxide fuel cell performance", Applied Thermal Engineering, Vol. 100, (2016), 98-104. (Doi: 10.1016/j.applthermaleng.2016.01.128).
10.   Pianko-Oprych, P., Zinko, T. and Jaworski, Z., "A numerical investigation of the thermal stresses of a planar solid oxide fuel cell", Materials, Vol. 9,No. 10, (2016), 814-831. (Doi: 10.3390/ma9100814).
11.   Celik, S., Ibrahimoglu, B., DMat, M., Kaplan, Y. and Veziroglu, T.N, "Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell", International Journal of Hydrogen Energy, Vol. 40, No. 24, (2015), 7895-7902. (Doi: 10.1016/j.ijhydene.2014.10.057).
12.   Luo, Y., Jiang, W., Zhang, Q., Zhang, W.Y. and Hao, M., "Effects of anode porosity on thermal stress and failure probability of planar solid oxide fuel cell with bonded compliant seal", International Journal of Hydrogen Energy, Vol. 41, No. 18, (2016), 7464-7474. (Doi:10.1016/j.ijhydene.2016.03.117).
13.   Kong, W., Zhang, W., Zhang, S., Zhang, Q. and Su, S., "Residual stress analysis of a micro-tubular solid oxide fuel cell", International Journal of Hydrogen Energy, Vol. 41, No. 36, (2016), 16173-16180, (Doi: 10.1016/j.ijhydene.2016.05.256).
14.   Fan, P., Li, G., Zeng, Y. and Zhang, X., "Numerical study on thermal stresses of a planar solid oxide fuel cell", International Journal of Thermal Sciences, Vol. 77, (2014), 1-10. (Doi: 10.1115/ FUELCELL2017-3176).
15.   Pianko-Oprych, P., Zinko, T. and Jaworski, Z., "Modeling of thermal stress in amicrotubular solid oxide fuel cell stack", Journal of Power Sources, Vol. 300, (2015), 10-23. (Doi: doi.org/10.1016/j.jpowsour. 2015.09.047).
16.   Pianko-Oprych, P., Zinko, T. and Jaworski, Z., "A numerical investigation of the thermal stresses of a planar solid oxide fuel cell", Materials (Basel), Vol. 9, No. 10, (2016). (Doi: 10.3390/ma9100814).
17.   Ho, T.X., Kosinski, P., Hoffmann, A.C. and Vik, A.,"Effects of heat sources on the performance of a planar solid oxide fuel cell", International Journal of Hydrogen Energy, Vol. 35, No. 9, (2010), 4276-4284. (Doi: 10.1016/j.ijhydene.2010.02.016).
18.   Bove, R. and Ubertini, S., Modeling solid oxide fuel cells methods, procedures and techniques, Fuel cell and hydrogen energy, Springer, New York, United States, (2008). (Doi: 10.1007/978-1-4020-6995-6).
19.   Larminie, J. and Dicks, A., Fuel cell systems explained, Second edition, John Wiley, New York, (2003). (Doi: 10.1002/9781118878330).
20.   Singh, P. and Bansal, P., Advances in solid oxide fuel cells IV, John Wiley, New York, (2008). (Doi: 10.1002/9780470456309).
21.   Taylor, R. and Krishna, R., Multicomponent mass transfer, First edition, John Willey, (1993).
22.   Nehter, P., Theoretical analysis of high fuel utilization solid oxide fuel cell, Nova Science Publications, New York, (2008).
23.   Akhtar, N., Decent, S.P., Loghin, D. and Kendall, K., "A three dimensional numerical model of a single-chamber solid oxide fuel cell", International Journal. Hydrogen Energy, Vol. 34, No. 20, (2009), 8645-8663. (Doi: 10.1016/j.ijhydene.2009.07.113).
24.   Milewski, J., Świrski, K., Santarelli, M. and Leone, P., Advanced methods of solid oxide fuel cell modeling, Springer Publication, New York, USA, (2011). (Doi: 10.1007/978-0-85729-262-9).
25.   Boley, B.A. and Weiner, J.H., Theory of thermal stresses, Dover Publication, New York, (1997).
26.   Hetnarski, R.B. and Eslami, M.R., Thermal stress: Advanced in theory, Springer Publication, New York, (2008). (Doi: 10.1007/978-1-4020-9247-3).
27.   Rogers, W.A., Gemmen, R.S., Johnson, C., Prinkey, M. and Shahnam, M., "Validation and application of a CFD-based model for solid oxide fuel cells and stacks", Proceedings of ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology, (2003), 517-520. (Doi: 10.1115/FUELCELL2003-1762).
28.   Hussain, M.M., Li, X. and Dincer, I., "Mathematical modeling of planar solid oxide fuel cells", Journal of Power Sources, Vol. 161, No. 2, (2006), 1012-1022. (Doi: 10.1016/j.jpowsour.2006.05.055).
29.   Shao, Q., Bouhala, L., Fiorelli, D., Fahs, M., Younes, A., Núñez, P., Belouettar, S. and Makradi, A., "Influence of fluid flow and heat transfer on crack propagation in SOFC multi-layered like material with anisotropic porous layers", International Journal of Solids and Structures, Vol. 97, (2016), 189-198. (Doi: 10.1016/j.ijsolstr. 2015.08.026).
30.   Shao, Q., Fernández-González, R., Ruiz-Morales, J.C., Bouhala, L., Fiorelli, D., Younes, A., Núñez, P., Belouettar, S. and Makradi, A., "An advanced numerical model for energy conversion and crack growth predictions in solid oxide fuel cell units", International Journal of Hydrogen Energy, Vol. 40, No. 46, (2015), 16509-16520. (Doi: 10.1016/j.ijhydene.2015.10.016).