Optimization and Experimental Approaches to the Direct Methanol Fuel Cell Stack Using a Response Surface Methodology

Document Type: Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering and Center for Renewable Energy Research, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Mechanical Engineering, Dokuz Eylul University, Buca, Izmir, Turkey

Abstract

The power density of a direct methanol fuel cell (DMFC) stack as a function of temperature, methanol concentration, oxygen flow rate, and methanol flow rate was studied using a response surface methodology (RSM) to maximize the power density. The operating variables investigated experimentally include temperature (50-75 °C), methanol concentration (0.5-2 M), methanol flow rate (15-30 ml min-1), and oxygen flow rate (900-1800 ml min-1). A new design of the central composite design (CCD) for a wide range of operating variables that optimize the power density was obtained using a quadratic model. The optimum conditions that yield the highest maximum power density of 86.45 mW cm-2 were provided using 3-cell stack at a fuel cell temperature of 75 °C with a methanol flow rate of 30 ml min-1, a methanol concentration of 0.5 M, and an oxygen flow rate of 1800 ml min-1. Results showed that the power density of DMFC increased with an increase in the temperature and methanol flow rate. The experimental data were in good agreement with the model predictions, demonstrating that the regression model was useful in optimizing maximum power density from the independent operating variables of the fuel cell stack.

Keywords

Main Subjects


1.     Colpan, C.O., Dincer, I. and Hamdullahpur, F., Portable fuel cells-Fundamentals, technologies and applications, In: Kakac, S., Pramuanjaroenkij, A. and Vasiliev, L., editors, Mini-micro fuel cells: Fundamentals and applications, NATO science for peace and security series, Springer, Netherlands, (2008), 87-101.

2.     Wang, C.Y., In: Kakac, S., Pramuanjaroenkij, A. and Vasiliev, L., editors, Mini-micro fuel cells: Fundamentals and applications, NATO science for peace and security series, Springer, Netherlands, (2008), 235-242.

3.     Ge, J. and Liu, H., "Experimental studies of a direct methanol fuel cell", Journal of Power Sources, Vol. 142, No. 1-2, (2005), 56-69. (DOI: 10.1016/j.jpowsour.2004.11.022).

4.     Argyropoulos, P., Scott, K. and Taama, W.M., "The effect of operating conditions on the dynamic response of the direct methanol fuel cell", Electrochimica Acta, Vol. 45, No. 12, (2000), 1983-1998. (DOI: 10.1016/S0013-4686(99)00420-X).

5.     Seo, S.H. and Lee, C.S., "Effect of operating parameters on the direct methanol fuel cell using air or oxygen as an oxidant gas", Energy & Fuels, Vol. 22, No. 2, (2008), 1212-1219. (DOI: 10 .10 21/ef700677y).

6.     Jung, D.H., Lee, C.H., Kim, C.S. and Shin, D.R., "Performance of a direct methanol polymer electrolyte fuel cell", Journal of Power Sources, Vol. 71, No. 1-2, (1998), 169-173. (DOI: 10.1016/S0378-7753(97)02793-6).

7.     Sharifi, S., Rahimi, R., Mohebbi-Kalhori, D. and Colpan, C.O., "Numerical investigation of methanol crossover through the membrane in a direct methanol fuel cell", Iranian Journal of Hydrogen and Fuel Cell, Vol. 5, No. 1, (2018), 21-33. (DOI: 10.22104/IJHFC.2018.2867. 1170).

8.     Myers, R.H. and Montgomery, D.C., Response surface methodology: Process and product optimization using designed experiments, John Wiley and Sons, USA, (2002).

9.     Taymaz, I., Akgun, F. and Benli, M., "Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC", Energy, Vol. 36, No. 2, (2011), 1155-1160. (DOI: 10.1016/j.energy.2010.11.034).

10.   Silva, V.B. and Rouboa, A., "Optimizing the DMFC operating conditions using a response surface method", Applied Mathematics and Computation, Vol. 218, No. 12, (2012), 6733-6743. (DOI: 10.1016/j.amc.2011.12.039).

11.   Charoen, K., Prapainainar, C., Sureeyatanapas, P., Suwannaphisit, T., Wongamornpitak, K., Kongkachuichay, P., Holmes, S.M. and Prapainainar, P., "Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production", Journal of Cleaner Production, Vol. 142, (2017), 1309-1320. (DOI: 10.1016/j.jclepro.2016.09.059).

12.   Yuan, Z., Yang, J., Zhang, Y. and Zhang, X., "The optimization of air-breathing micro direct methanol fuel cell using response surface method", Energy, Vol. 80, No. 1, (2015), 340-349. (DOI: 10.1016/j.energy.2014.11.076).

13.   Ordonez, M., Tariq Iqbal, M., Quaicoe, J.E. and Lye, L.M., "Modeling and optimization of direct methanol fuel cells using statistical design of experiment methodology", Proceedings of Canadian Conference on Electrical and Computer Engineering, (2006), 1120–1124. (DOI: 10.1109/CCECE.2006.277802).

14.   Liu, Y., Xie, X., Shang, Y., Li, R., Qi, L., Guo, J. and Mathur, V.K., "Power characteristics and fluid transfer in 40 W direct methanol fuel cell stack", Journal of Power Sources, Vol. 164, No. 1, (2007), 322-327. (DOI: 10.1016/j.jpowsour.2002.09.017).

15.   Sasmito, A.P., Kurnia, J.C., Shamim, T. and Mujumdar, A.S., "Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method", Applied Energy, Vol. 185, (2017), 1225-1232. (DOI: 10.1016/j.apenergy.2015.12.098).

16.   Yu, W., Wu, S. and Shiah, S., "Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks", International Journal of Hydrogen Energy, Vol. 35, No. 20, (2010), 11138-11147. (DOI: 10.1016/j.ijhydene. 2010.07.007).

17.   Macedo-Valencia, J., Sierra, J.M., Figueroa-Ramírez, S.J., Díaz, S.E. and Meza, M., "3D CFD modeling of a PEM fuel cell stack", International Journal of Hydrogen Energy, Vol. 41, No. 48, (2016), 23425-23433. (DOI: 10.1016/j. ijhydene.2016.10.065).

18.   Liso, V., Simon Araya, S., Olesen, A., Nielsen, M. and Kær, S., "Modeling and experimental validation of water mass balance in a PEM fuel cell stack", International Journal of Hydrogen Energy, Vol. 41, No. 4, (2016), 3079-3092. (DOI: 10.1016/j.ijhydene.2015.10.095).

19.   Philipps, S.P. and Ziegler, C., "Computationally efficient modeling of the dynamic behavior of a portable PEM fuel cell stack", Journal of Power Sources, Vol. 180, No. 1, (2008), 309-321. (DOI: 10.1016/j. jpowsour.2008.01.089).

20.   Nguyen, G., Sahlin, S., Andreasen, S., Shaffer, B. and Brouwer, J., "Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack", International Journal of Hydrogen Energy, Vol. 41, No. 8, (2016), 4729-4739. (DOI: 10.1016/j.ijhydene.2016.01.045).

21.   Amirfazli, A., Asghari, S. and Koosha, M., "Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks", Journal of Power Sources, Vol. 268, (2014), 533-545. (DOI: 10.1016/j.jpowsour.2014.06.073).

22.   Shimpalee, S., Ohashi, M., Van Zee, J.W., Ziegler, C., Stoeckmann, C., Sadeler, C. and Hebling, C., "Experimental and numerical studies of portable PEMFC stack", Electrochimica Acta, Vol. 54, No. 10, (2009), 2899-2911. (DOI: 10.1016/j.electacta.2008.11.008).

23.   Liu, Z., Mao, Z., Wang, C., Zhuge, W. and Zhang, Y., "Numerical simulation of a mini PEMFC stack", Journal of Power Sources, Vol. 160, No. 2, (2006), 1111-1121. (DOI: 10.1016/j.jpowsour. 2006.03.001).

24.   Qin, Y., Liu, G., Chang, Y. and Du, Q., "Modeling and design of PEM fuel cell stack based on a flow network method", Applied Thermal Engineering, Vol. 144, (2018), 411-423. (DOI: 10.1016/ j.applthermaleng.2018.08.050).

25.   Drakselová, M., Kodým, R., Šnita, D., Beckmann, F. and Bouzek, K., "Three-dimensional macrohomogeneous mathematical model of an industrial-scale high-temperature PEM fuel cell stack", Electrochimica Acta, Vol. 273, (2018), 432-446. (DOI: 10.1016/j.electacta. 2018.04.042).

26.   Argyropoulos, P., Scott, K. and Taama, W.M., "Modeling flow distribution for internally manifolded direct methanol fuel cell stacks", Chemical Engineering & Technology, Vol. 23, (2000), 985-995. (DOI: 10.1002/ 1521-4125(200011)23:113.0.CO;2-D).

27.   Argyropoulos, P., Scott, K. and Taama, W.M., "One-dimensional thermal model for direct methanol fuel cell stacks: Part I. Model development", Journal of Power Sources, Vol. 79, No. 2, (1999), 169-183. (DOI: 10. 1016/S0378-7753(99)00181-0).

28.   Simoglou, A., Argyropoulos, P., Martin, E.B., Scott, K., Morris, A.J. and Taama, W.M., "Dynamic modelling of the voltage response of direct methanol fuel cells and stacks: Part I. Model development and validation", Chemical Engineering Science, Vol. 56, No. 23, (2001), 6761-6772. (DOI: 10.1016/S0009-2509 (01)00144-0).

29.   Scott, K., Argyropoulos, P. and Taama, W.M., "Modelling transport phenomena and performance of direct methanol fuel cell stacks", Chemical Engineering Research and Design, Vol. 78, No. 6, (2000), 881-888. (DOI: 10.1205/026 387600527941).

30.   Kim, D., Lee, J., Lim, T.H., Oh, I.H. and Ha, H.Y., "Operational characteristics of a 50 W DMFC stack", Journal of Power Sources, Vol. 155, No. 2, (2006), 203-212. (DOI: 10.1016/j.jpowsour. 2005.04.033).

31.   Lohoff, A.S., Kimiaie, N. and Blum, L., "The application of design of experiments and response surface methodology to the characterization of a direct methanol fuel cell stack", International Journal of Hydrogen Energy, Vol. 41, No. 28, (2016), 12222-12230. (DOI: 10.1016/j.ijhydene.2016.05.248).

32.   Santiago, O., Aranda-Rosales, M.A., Navarro, E., Raso, M.A. and Leo, T.J., "Automated design of direct methanol fuel cell stacks: A quick optimization", International Journal of Hydrogen Energy, Vol. 44, No. 21, (2019), 10933-10950. (DOI: 10. 1016/j.ijhydene.2019.02.163).