Aluminum Hydroxide-Based Flame-Retardant Composite Separator for Lithium-Ion Batteries

Document Type: Research Article

Authors

1 Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran.

2 Department of Materials Science and Engineering, Engineering School, Shiraz University, Shiraz, Iran.

Abstract

Despite the extensive use of polyolefins, especially in the form of lithium-ion battery (LIB) separators, their flammability limits their large-scale battery applications. Therefore, the fabrication of flame-retardant LIB separators has attracted much attention in recent years. In this work, composite separators were fabricated by applying a ceramic-based composite coating composed of a metal hydroxide as a filler and flame-retardant agent (Aluminium hydroxide, Al(OH)3) and a binder (Poly(vinylidene Fluoride-co-hexafluoropropylene), P(VDF-HFP)) to the polypropylene (PP) commercial separator. Thermal shrinkage, thickness, air permeability, porosity, wettability, ionic conductivity, flame retardancy, and electrochemical performance of the fabricated ceramic-coated composite separator were investigated. The results showed that the addition of Al(OH)3 particles improved thermal shrinkage ( 8 %) and flame retardancy of the commercial separator, which can prevent dimensional changes at high temperatures and significantly increase LIBs safety. Applied 11 µm ceramic-based coating layer on PP commercial separator had 76 % porosity that increased the value of air permeability from 278.15 (s/100 cc air) to 312.8 (s/100 cc air), causing much facile air permeation through the pores of commercial separator than the composite one. Furthermore, suitable electrolyte uptake and the contact angle of ceramic coated separator (135 % and 91.19°, respectively) facilitated ion transport through the pores, which effectively improved the ionic conductivity of Al(OH)3-coated PP separator (about 1.4 times higher than bare separator). Moreover, the cell comprising Al(OH)3-coated PP separator had better cyclic performance than that of bare PP separator. All these characteristics make the fabricated flame-retardant Al(OH)3 composite separator an appropriate candidate to ensure the safety of the large-scale LIB.

Keywords

Main Subjects


1.     Sarirchi, S. and Rowshanzamir, S., "An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells", Journal of Renewable Energy and Environment (JREE), Vol. 4, (2017), 46-60.

2.     Ahmadi, N., Rezazadeh, S.A. and Dadvand, A., "Numerical investigation of the effect of gas diffusion layer with semicircular prominences on polymer exchange membrane fuel cell performance and species distribution", Journal of Renewable Energy and Environment (JREE), Vol. 2, (2015), 36-46.

3.     Moghim, M.H., Eqra, R., Babaiee, M., Zarei-Jelyani, M. and Loghavi, M.M., "Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery", Journal of Electroanalytical Chemistry, Vol. 789, (2017), 67-75. (https://doi.org/10.1016/j.jelechem.2017.02.031).

4.     Zarei-Jelyani, M., Babaiee, M., Ghasemi, A. and Eqra, R., "Investigation of hydroxylated carbon felt electrode in vanadium redox flow battery by using optimized supporting electrolyte", Journal of Renewable Energy and Environment (JREE), Vol. 3, (2016), 54-59.

5.     Loghavi, M.M., Askari, M., Babaiee, M. and Ghasemi, A., "Improvement of the cyclability of Li-ion battery cathode using a chemical-modified current collector", Journal of Electroanalytical Chemistry, Vol. 841, (2019), 107-110. (https://doi.org/10.1016/ j.jelechem.2019.04.037).

6.     Raja, M., Angulakshmi, N., Thomas, S., Kumar, T.P. and Stephan, A.M., "Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries", Journal of Membrane Science, Vol. 471, (2014), 103-109. (https://doi.org/10.1016/j.memsci. 2014.07.058).

7.     Guo, Y.-G., Hu, J.-S. and Wan, L.-J., "Nanostructured materials for electrochemical energy conversion and storage devices", Advanced Materials, Vol. 20, (2008), 2878-2887. (doi:10.1002/adma.200800627).

8.     Kim, J.-H., Kim, J.-H., Choi, K.-H., Yu, H.K., Kim, J.H., Lee, J.S. and Lee, S.-Y., "Inverse opal-inspired, nanoscaffold battery separators: A new membrane opportunity for high-performance energy storage systems", Nano Letters, Vol. 14, (2014), 4438-4448. (doi:10.1021/nl5014037).

9.     Arora, P. and Zhang, Z., "Battery separators", Chemical Reviews, Vol. 104, (2004), 4419-4462. (doi:10.1021/cr020738u).

10.   Abraham, K.M., Alamgir, M. and Hoffman, D.K., "Polymer electrolytes reinforced by Celgard® Membranes", Journal of The Electrochemical Society, Vol. 142, (1995), 683-687.

11.   Chen, H., Lin, Q., Xu, Q., Yang, Y., Shao, Z. and Wang, Y., "Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries", Journal of Membrane Science, Vol. 458, (2014), 217-224. (https://doi.org/10.1016/j.memsci.2014.02.004).

12.   Prasanna, K., Subburaj, T., Lee, W.J. and Lee, C.W., "Polyethylene separator: Stretched and coated with porous nickel oxide nanoparticles for enhancement of its efficiency in Li-ion batteries", Electrochimica Acta, Vol. 137, (2014), 273-279. (https://doi.org/10.1016/ j.electacta.2014.06.026).

13.   Lee, Y.M., Kim, J.-W., Choi, N.-S., Lee, J.A., Seol,W.-H. and Park, J.-K., "Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries", Journal of Power Sources, Vol. 139, (2005), 235-241. (https://doi.org/10.1016/j.jpowsour.2004.06.055).

14.   Song, J., Ryou, M.-H., Son, B., Lee, J.-N., Lee, D.J., Lee, Y.M., Choi, J.W. and Park, J.-K., "Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries", Electrochimica Acta, Vol. 85, (2012), 524-530. (https://doi.org/10.1016/j.electacta. 2012.06.078).

15.   Jiao, C.M. and Chen, X.L., "Flame retardant synergism of hydroxy silicone oil and Al(OH)3 in EVA composites", Polymer-Plastics Technology and Engineering, Vol. 48, (2009), 665-670. (doi:10.1080/03602550902824531).

16.   Ramazani, S.A.A., Rahimi, A., Frounchi, M. and Radman, S., "Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites" Materials & Design, Vol. 29, (2008), 1051-1056. (https://doi.org/ 10.1016/j.matdes.2007.04.003).

17.   Liang, J.-Z., "Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): A review", Journal of Applied Polymer Science, Vol. 83, (2001), 1547-1555. (doi:10.1002/app.10052).

18.   Shabanian, M. and Ghanbari, D., "Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly(ether-amide)", Journal of Applied Polymer Science, Vol. 127, (2012), 2004-2009. (doi:10.1002/app.37640).

19.   https://imagej.nih.gov/ij/.

20.   Yu, L., Jin, Y. and Lin, Y.S., "Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder", RSC Advances, Vol. 6, (2016), 40002-40009. (doi:10.1039/C6RA04522G).

21.   Yeon, D., Lee, Y., Ryou, M.-H. and Lee, Y.M., "New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries", Electrochimica Acta, Vol. 157, (2015), 282-289. (https://doi.org/10.1016/j.electacta.2015.01.078).

22.   Sain, M., Park, S.H., Suhara, F. and Law, S., "Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide", Polymer Degradation and Stability, Vol. 83, (2004), 363-367. (https://doi.org/10.1016/S0141-3910(03)00280-5).

23.   Zhang, A., Zhang, Y., Lv, F. and Chu, P.K., "Synergistic effects of hydroxides and dimethyl methylphosphonate on rigid halogen-free and flame-retarding polyurethane foams", Journal of Applied Polymer Science, Vol. 128, (2012), 347-353. (doi:10.1002/app.38200).

24.   Sato, T., "Thermal decomposition of aluminium hydroxides to aluminas", Thermochimica Acta, Vol. 88, (1985), 69-84. (https://doi.org/10.1016/0040-6031(85)85415-0).

25.   Zhang, S.S., "A review on the separators of liquid electrolyte Li-ion batteries", Journal of Power Sources, Vol. 164, (2007), 351-364. (https://doi.org/10.1016/j.jpowsour.2006.10.065).

26.   Lee, Y., Ryou, M.-H., Seo, M., Choi, J.W. and Lee, Y.M., "Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries", Electrochimica Acta, Vol. 113, (2013), 433-438. (https://doi.org/10.1016/j.electacta. 2013.09.104).

27.   Zhang, Z., Lai, Y., Zhang, Z., Zhang, K. and Li, J., "Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries", Electrochimica Acta, Vol. 129, (2014), 55-61. (https://doi.org/10.1016/j.electacta.2014.02.077).

28.   Xu, R.,Lin, X., Huang, X., Xie, J., Jiang, C. and Lei, C., "Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries", Journal of Solid State Electrochemistry, Vol. 22, No. 3, (2017), 739-747. (doi:10.1007/s10008-017-3780-3).

29.   Wang, Z.,Xiang, H., Wang, L., Xia, R., Nie, S., Chen, C. and Wang, H., "A paper-supported inorganic composite separator for high-safety lithium-ion batteries", Journal of Membrane Science, Vol. 553, (2018), 10-16. (https://doi.org/10.1016/j.memsci.2018.02.040).

30.   Shi, C., Dai, J., Shen, X., Peng, L., Li, C., Wang, X., Zhang, P. and Zhao, J., "A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries", Journal of Membrane Science, Vol. 517, (2016), 91-99. (https://doi.org/10.1016/j.memsci.2016.06.035).

31.   Jeon, H., Yeon, D., Lee, T., Park, J., Ryou, M.-H. and Lee, Y.M., "A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries", Journal of Power Sources, Vol. 315, (2016), 161-168. (https://doi.org/10.1016/j.jpowsour.2016.03.037).