Document Type : Research Article

Authors

1 Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, MeshkinDasht, Alborz, Iran.

2 ِDepartment of Energy, Materials and Energy Research Center, MeshkinDasht, Alborz, Iran.

Abstract

This study investigated the esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, and Oleic acid) and ethanol by ZnO, Al2O3-ZnOmixed oxide, and phosphotungestic acid (10 wt %) immobilized on the Al2O3-ZnOmixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM, and EDX techniques. Optimum yield was achieved by using 10 % HPW/Al2O3-ZnOas the best catalyst, and the effects of the amount of catalyst, molar ratio of acid to alcohol, reaction temperature, and time were investigated to ensure the ideal yield of esterification reaction of acetic acid and ethanol. The results showed that the esterification of acetic acid to its ethyl ester was carried out in 3.5 hours, with an alcohol-to-acid-molar ratio of 2 and a temperature of 80 ˚C with yield 98 %. Moreover, the 10 % HPW/Al2O3-ZnOcatalystshowed well activity in biodiesel production by the esterification of palmitic and oleic acids and the reaction yield did not decrease with an increase in alkyl chain lengthin acid molecules, remarkably.

Keywords

Main Subjects

1.     Gangadwala, J., Mankar, S., Mahajani, S. and Stein, A.K.E., "Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts", Industrial & Engineering Chemistry Research, Vol. 43, No. 10, (2003), 2146-2155. (DOI: 10.1021/ ie0204989).
2.     Aghabarari, B., Ghiaci, M., Amini, S.G., Rahimi, E. and Martinez-Huerta, M.V., "Esterification of fatty acids by new ionic liquids as acid catalysts", Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, No. 2, (2014), 431-435. (DOI:10.1016/j.jtice.2013.08.003).
3.     Uprety, B.K., Chaiwong, W., Ewelike, C. and Rakshit, S.K., "Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity", Energy Conversion and Management ,Vol. 115, (2016), 191-199. (DOI: 10.1016/j.enconman.2016.02.032).
4.     Alcañiz-Monge, J., El Bakkali, B., Trautwein, G. and Reinoso, S,. "Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production", Applied Catalysis B: Environmental, Vol. 224, (2018), 194-203. (DOI: 10.1016/j.apcatb. 2017.10.066).
5.     Soltani, S., Rashid, U., Al-Resayes, S.I. and Nehdi, I.A., "Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review", Energy Conversion and Management, Vol. 141, (2017), 183-205. (DOI: 10.1016/j.enconman.2016.07.042).
6.     Srilatha, K., Lingaiah, N., Prabhavathi, D.B., Prasad, R.B.N., Venkateswar, S. and Sai Prasad, P.S., "Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts", Applied Catalysis A: General, Vol. 365, (2009), 28-33. (DOI: 10.1016/j.apcata.2009.05.025).
7.     Wee, L.H., Bajpe, S.R., Janssens, N., Hermans, I., Houthoofd, K., Kirschhocka, C.E.A. and Martens, J.A., "Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis", Chemical Communications, Vol. 46, No. 43, (2010), 8186-8188. (DOI:10.1039/C0CC01447H).
8.     Manikandan, K. and Cheralathan, K.K., "Heteropoly acid supported on silicalite –1 possesing intracrystalline nanovoids prepared using biomass – an efficient and recyclable catalyst for esterification of levulinic acid", Applied Catalysis A: General, Vol. 547, (2017), 237-247. (DOI: 10.1016/j.apcata.2017.09.007).
9.     Ribeiro, J.S., Celante, D., Brondani, L.N., Trojahn, D.O., Silva, C.d. and Castilhos, F.d., "Synthesis of methyl esters and triacetin from macaw oil (Acrocomia aculeata ) and methyl acetate over γ –alumina", Industrial Crops & Products, Vol. 124, (2018), 84-90. (DOI: 10.1016/j.indcrop. 2018.07.062).
10.   Sung, D.M., Kim, Y.H., Park, E.D. and Yie, J.E., "Correlation between acidity and catalytic activity for the methanol dehydration over various aluminum oxides", Research on Chemical Intermediates, Vol. 36, (2010), 653-660. (DOI: 10.1007/s11164-010-0201-y).
11.   Kwong, T. and Yung, K.F., "One-step production of biodiesel through simultaneous esterification and transesterification from highly acidic unrefined feedstock over efficient and recyclable ZnO nanostar catalyst", Renewable Energy, Vol. 90, (2016), 450-457. (DOI: 10.1016/j.renene. 2016.01.028).
12.   Anjani, N., Naik, S. and Fernandes, J., "Zinc oxide as a solid acid catalyst for esterification reaction", Catalysis Communications, Vol. 65, (2015), 20-23. (DOI: 10.1016/j.catcom.2015.02.009).
13.   Lee, H.V., Juan, J.C. and Taufiq-Yap, Y.H., "Preparation and application of binary acid- base CaO-La2O3 catalyst for biodiesel production", Renewable Energy, Vol. 74, (2015), 124-132. (DOI: 10.1016/j.renene.2014.07.017).
14.   Lee, H.V., Taufiq-Yap, Y.H., Hussein, M.Z. and Yunus, R., "Transesterification of jatropha oil with methanol over Mg-Zn mixed metal oxide catalysts", Energy, Vol. 49, (2013), 12-18. (DOI: 10.1016/j.energy.2012.09.053).
15.   Wen, Z., Yu, X., Tu, S-T., Yan, J. and Dahlquist, E., "Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides", Bioresource Technology, Vol. 101, (2010), 9570-9576. (DOI: 10.1016/j.biortech.2010.07.066).
16.   Carrera, Y., Morales-Mendoza, G., Valverde-Aguilar, G. and Mantilla, A., "ZnO–Al2O3–La2O3 layered double hydroxides as catalysts precursors for the esterification of oleic acid fatty grass at low temperature". Catalysis Today, Vol. 212, (2013), 164-168. (DOI: 10.1016/j.cattod.2012.12.017).
17.   Chen, C., Liu, P. and Lu, C., "Synthesis and characterization of nano-sized ZnO powders by direct precipitation method", Chemical Engineering Journal, Vol. 144, No. 3, (2008), 509-513. (DOI: 10.1016/j.cej.2008.07.047).
18.   Qi, G., Yang, R.T. and Chang, R., "MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures", Applied Catalysis B: Environmental, Vol. 51, No. 2, (2004), 93-106. (DOI: 10.1016/j.apcatb.2004.01.023).
19.   Nie, G., Zou, J.J., Feng, R., Zhang, X. and Wang, L., "HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine", Catalysis Today, Vol. 234, (2014), 271-277. (DOI: 10.1016/j.cattod.2013.12.003).
20.   Cho, H.T., Salvia-Trujillo, L., Kim, J., Park, Y., Xiao, H. and McClements, D.J., "Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10", Food Chemistry, Vol. 156, (2014), 117-122. (DOI: 10.1016/j.foodchem.2014.01.084).
21.   Pung, S.Y., Ong, C.S., Isha, K.M. and Othman, M.H., "Synthesis and characterization of Cu-doped ZnO nanorods", Sains Malaysiana, Vol. 43, No. 2, (2014), 273-281.
22.   Ullah, R., Zhang, Z., Bai, P., Wu, P., Han, D., Etim, U.J. and Yan, Z., "One-pot cation–anion double hydrolysis derived Ni/ZnO–Al2O3 absorbent for reactive adsorption desulfurization", Industrial & Engineering Chemistry Research, Vol. 55, No. 13, (2016), 3751-3758. (DOI: 10.1021/acs.iecr.5b04421).
23.   Oliveira, C.F., "Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia", Applied Catalysis A: General, Vol. 372, No. 2, (2010) 153-161. (DOI: 10.1016/j.apcata. 2009.10.027).
24.   Manabe, S., Sun, K. and Kobayashi, X.M., "Dehydration reactions in water. surfactant-type Bronsted acid-catalyzed direct esterification of carboxylic acids with alcohols in an emulsion system", Journal of the American Chemical Society, Vol. 123, No. 41, (2001), 10101-10102. (DOI: 10.1021/ja016338q).
25.   Aghabarari, B. and Dorostkar, N., "Modified bentonite as catalyst for esterification of oleic acid and ethanol", Journal of the Taiwan Institute of Chemical Engineers, Vol.45, No. 4, (2014), 1468-1473. (DOI: 10.1016/j.jtice.2014.03.006).
26.   Borges, M.E. and Díaz, L., "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review", Renewable and Sustainable Energy Reviews, Vol. 16, No. 5, (2012), 2839-2849. (DOI: 10.1016/j.rser.2012.01.071).
27.   Khudsange, C.R. and Wasewar, K.L., "Kinetics, mass transfer, and thermodynamic and statistical modeling study for esterification of valeric acid with n‐butanol: Homogeneous and heterogeneous catalysis", International Journal of Chemical Kinetics, Vol.50, No. 10, (2018), 710-725. (DOI: 10.1002/kin.21195).
28.   Newman M.S., Steric effects in organic chemistry, London, John Wiley & Sons, (1956).
29.   Charton, M., "Steric effects In esterification and acid-catalyzed hydrolysis of esters" Journal of the American Chemical Society, Vol. 97, No. 6, (1975), 1552-1556. (DOI: 10.1021/ja00839a047).
30.   Fujita, M.N. and Takayama, T.C., "Nature and composition of Taft-Hancock steric constants", Journal of Organic Chemistry, Vol. 38, No. 9, (1973), 1623-1630. (DOI: 10.1021/jo00949a001).