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A B S T R A C T  
 

Land-use change is one of the most important spatial phenomena that can affect the usage of energy 
technologies. In this study, land-use change in barren and residential areas in Alborz province in Iran was 
modeled using the cellular automata combined with the Markov Chain from 2001 to 2031. Due to adaptability 
to the environmental considerations, all protected areas were removed from the study area. Then, an 
economical and performance-based optimization model was developed; then, by using the status of the two 
land-use classes in 2031, an optimum scenario was identified for generating solar electricity. Based on the 
results, the optimum scenario involves installing distributed photovoltaic modules in 18.37 % of residential 
areas and setting up concentrated solar systems in 0.74 % of barren areas, simultaneously. Economic 
investigation of the optimum scenario showed that although there were some environmental and political 
benefits for using the solar electricity such as reduction of air pollutants and more energy safety, the optimum 
scenario will be costly and non-economical without the government’s financial supports. 
 

https://doi.org/10.30501/jree.2021.238031.1125 

1. INTRODUCTION* 

Today, accessibility to energy resources is one of the basic 
requirements for sustainable development. On the other hand, 
developing the usage of green energy resources has significant 
impacts on reducing COx emission. Renewable energy takes 
into account some environmental considerations in addition to 
the ability to supply energy and, therefore, it is known as the 
best alternative to fossil fuels [1]. Renewable energy is 
provided by different resources and it is possible to choose the 
appropriate resource in accordance with the regional, political, 
environmental, economic, and technological conditions for the 
target area. 
   Solar energy is one of the most common forms of renewable 
energy that can be used in both electrical and thermal systems. 
Solar power is an autochthonous energy resource, so it can be 
used to reduce the grid electricity dependency and improve 
regional developments. The basis for using the solar energy is 
the absorption and energy conversion of the photons received 
from the solar illumination into another form of energy. 
Generally, solar energy is directly converted into electricity by 
photovoltaic effect. Generally, photovoltaic systems can be 
utilized in two major types including concentrated solar farms 
or distributed photovoltaic panels. Concentrated solar farms 
are usually installed in the desert and barren areas with the 
sufficient irradiation, whereas distributed photovoltaic panels 
                                                           
*Corresponding Author’s Email: mh.jahangir@ut.ac.ir (M.H. Jahangir) 
  URL: http://www.jree.ir/article_127961.html 

are mostly installed on building’s roofs [2]. Therefore, the 
effective use of solar energy systems needs precise 
identification of the received solar illumination and it is 
necessary to investigate the relevant factors such as the 
accessible region area. 
   Land-use is changing rapidly on many parts of the Earth due 
to urbanization. Generally, urbanization can affect all kinds of 
energy demands. Sometimes, these changes end up with 
increasing non-productive land-uses in the urban areas such as 
residential and barren areas. This transition might result 
potentially in decreasing food farms and bio-resources, but 
they can be used as suitable places for energy production. 
Cities as the common type of land-use changes are responsible 
for three-quarters of global energy consumption and an 
important part of greenhouse gas emissions subsequently. 
There are many direct and indirect approaches to evaluating 
the land-use changes and finding a model to predict such 
variations is a useful approach for the policy-makers to 
analyze accessible regions as an infrastructure factor in using 
renewable energy systems [3]. 
   Based on the findings of many studies, simulation with the 
cellular automata method was determined as an appropriate 
approach to assessing land-use changes. Cellular automata can 
be combined with the Geographic Information System (GIS) 
and allows modeling the environmental changes. Generally, 
cellular automata can analyze spatiotemporal data by 
considering local considerations. In this way, a cell in cellular 
automata shows a region of the real world. In this model, all 
the cells have discrete states and each cell is surrounded by its 
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adjacent neighborhood cells. Therefore, the new status of each 
cell is determined by its previous state and the status of its 
neighborhood cells by considering the user-defined transition 
rules [4]. Transition rules in cellular automata can be defined 
in many different ways. One common approach is to use 
Markov chain to define them. In the real world, all parameters 
and rules are not clearly known for modeling; therefore, the 
rules will be defined according to the objectives and 
unimportant ones will be ignored. After running the initial 
cellular automata model, by comprising the observed and 
simulated data, the used parameters and rules are evaluated 
and change in required cases; thus, the accuracy of the model 
will be enhanced [5]. 
   Huang et al. (1995) [6] used some different MCDM (Multi 
Criteria Decision Making) approaches such as ELECTRE 
(Elimination Et Choix Traduisant la REalite), TOPSIS 
(Technique for Order Preference by Similarity to Ideal 
Solution), and AHP (Analytic Hierarchy Process) to identify 
the best structure of the renewable energy systems. Their 
results showed that using the MCDM approaches could 
achieve optimum states. Mavromatakis et al. (2010) [7] 
assessed various MCDM approaches to selecting the most 
appropriate photovoltaic system by considering the 
environmental and economic conditions simultaneously. They 
mentioned that considering both economic and environmental 
factors would lead to identifying a sustainable solution in a 
long run. Janke (2010) [8] combined GIS and MCDM to 
determine the best land-use for establishing solar and wind 
farms. They showed that their approach was computable and 
also could consider different complex states. Wiginton at al. 
(2010) [9] assessed the ability of GIS and image processing to 
determine the available area to establish distributed 
photovoltaic systems on rooftop of buildings in Canada. 
Charabi and Gastli (2011) [10] studied the effect of land 
suitability on establishing large solar farms in Oman by using 
combination of GIS and MCDM approaches. They expressed 
that considering the accessible region areas was a key 
infrastructure factor in reaching higher performance of the 
solar farms. Sanchez-Lozano et al. (2013) [11] studied the 
ability of combination of GIS and some MCDM approaches 
including AHP and TOPSIS to identify the appropriate 
regions for site selection of a photovoltaic power plant. 
Amaducci et al. (2018) [12] investigated the impacts of land-
use classes and their changes on the photovoltaic power plans, 
and vice versa. Their findings showed that the performance of 
the photovoltaic power plans could seriously change due to 
the type of land-use. Santoli et al. (2019) [13] employed GIS 
to predict accessibility to the renewable energy resources and 
electric energy consumptions on municipality scales. They 
mentioned that although land-use change affects the 
accessibility to the renewable energy resources, it also affects 
energy demand simultaneously. 
   As mentioned before, many distributed and concentrated 
photovoltaic systems have been established all over the world 
over the last years. One important question is which 
approaches (distributed or concentrated) would lead to greater 
performance for a specific region by considering the 
environmental concerns and economic benefits 
simultaneously. In this study, an attempt is made to model the 
land-use changes to maximize using the solar energy as an 
important resource of energy as a way to achieve sustainable 
development. Thus, a GIS-based model was prepared to 
identify the changes of two land-use classes including 

residential and barren areas. After model validation, the status 
of the considered classes was predicted in the future. Finally, 
some common different distributed and concentrated 
photovoltaic systems were considered and the optimum 
solution was identified by combining the results of the land-
use changes and an integrated economic and environmental 
MCDM. The results of this study suggest an optimum strategy 
for achieving more renewable energy performance in the 
study area. 
 
2. METHOD 

2.1. Methodology 

In this section, study area is introduced and the reason for 
selecting this area is described. After that, a GIS-based 
cellular automata model is developed and the used approach to 
improving its accuracy is discussed alongside the sensitivity 
analysis of the model. In the last part, an optimization model 
is introduced for predicting the production of photovoltaic 
electricity in the study area by considering the concentrated 
and distributed photovoltaic systems. 
 
2.2. Study area 

Alborz province is a crowded province of Iran and is in the 35 
km of northwest of Tehran (Figure 1). The Alborz province 
consists of Karaj, Savojbolagh, Taleqan, Eshtehard, Fardis, 
and Nazarabad Counties and Karaj is the capital of the 
province. This province is situated at the foothills of the 
Alborz Mountains and it is Iran's smallest province in the area. 
According to the National Census, in 2016, the population of 
the Alborz province was 2.712 million and 90 % of its 
population live in urban areas. The population density in 
Alborz province is between 0 (people per square kilometer) 
for non-residential areas and 620 (people per square 
kilometer) in the Karaj city as the most populated area [14]. 
Alborz province has experienced a high growth rate in 
population, especially in urban areas in the last decade. 
Therefore, it is predicted that its population and energy 
demand will be faced with higher amounts in the future. Iran 
has about 300 clear sunny days in a year and its average solar 
radiation is about 2200 kWh per square meter. Studies show 
that about 9 million MWh of energy can be obtained in a day 
considering only 1 % of the total area with 10 % system 
efficiency for solar energy harness [15]. Although studies 
show that Alborz province does not have the highest potential 
in accessing solar energy in Iran [16], energy experts 
recommend using the local power plants to reduce energy loss 
in the transmission process [17]. Clearly, the main reason for 
selecting this study area was because of its growing needs of 
the energy. 
 
2.3. GIS-based cellular modelling of land-use changes 

2.3.1. Data preparation 

First, satellite images of the study area were collected from the 
Landsat 7 for 2001 and 2016. Based on technical 
considerations, it needs maximum irradiation to set up 
enhanced solar farms as concentrated photovoltaic systems, 
and it can be accessed in higher amounts on barren areas 
which have no plants and shadows. The barren area is like 
deserts and ruins of buildings and so on [19]. On the other 
hand, the best choice for distributed systems is building’s 
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roofs and blank in-urban spaces which were considered as 
residential areas. Thus, two land-use classes were selected and 
extracted from the obtained satellite images. The extraction of 
land-use classes was done by using the method of similarity of 
phenomena based on their spectral signatures. it is noteworthy 
to say that controlling and geo-referencing the used maps 
should be done before any GIS-based studies. Therefore, the 
obtained maps were controlled to ensure that all maps had the 
same coordinate system, projection unit, and cell size. The 
considered properties of all maps in this study are shown in 
Table 1 and the observed land-use maps of Alborz province in 
2001 are given in Figure 2. 

 

 
Figure 1. The location of Alborz province in Iran [18] 

Table 1. The considered map properties in the research 

Properties Values 

File type tiff 

Cell size 30 × 30 m 

Projection system WGS84–UTM39N 

 
To make a geographical model, it was needed to use some 
other ancillary maps. These maps were used as independent 
variables and the land-use change was considered as the 
dependent variable. Generally, all independent variables were 
divided into two categories including static and dynamic ones. 
Based on the similar studies, eight variables were employed 
including six static maps and two dynamic maps. The 
dynamic maps were distance from the residential area and 
distance from the barren area, and the statues of these 
variables changed during the time. Static maps were elevation, 
slope, aspect (the direction of hillsides), river, road, and water 
bodies and they were prepared from the database of the 
Iranian National Cartographic Center [20] and the National 
Atlas of Iranian Deserts [21]. All used independent variables 
are shown in Figure 3. It is noteworthy to say that the dynamic 
maps were generated by the model at each time step of the 
study. 

 

 
Figure 2. The observed land-use map of Alborz province given from 

processing satellite images in 2001 
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Figure 3. The used maps as independent variables 

 
2.3.2. The model structure 

After collecting the required data, the observed maps in 2001 
and 2016 were compared by the Markov Chain. Thus, a 
matrix of coefficients was obtained that indicated the 
probability of changing one land-use class into another, called 
transition coefficients. Then, this matrix was divided into 
intervals per each transition and a new matrix called Weight 
of Evidence was generated that indicated the weights for each 
ancillary variable by considering the probability of transition 
in any regions. After that, ineffective and correlated variables 
were identified and removed from the model. In the next step, 
a cellular automata model was run on the observed land-use 
map in 2011 by considering the matrix of coefficients and all 
ancillary maps were used as the rules. Therefore, the new 
status of land-use classes in 2016 was simulated and stored as 

a land-use map. At this level, the simulated and observed 
land-use maps in 2016 were compared using reciprocal fuzzy 
similarity analysis and minimum similarity [22] between them 
was determined. If the accuracy of the simulated map was less 
than 90 %, then by modifying ancillary variables and their 
weights, the model would be calibrated again and a new 
simulation was performed. Therefore, the model validation 
and the sensitivity analysis of the model were done during the 
modeling process. Simply, identifying the inappropriate 
dependent variables and eliminating them from the model 
show the sensitivity of the proposed model to its variables and 
repeating the simulation process until reaching the appropriate 
accuracy indicates the model validation. In Figure 4, there is a 
diagram of the described model. Also, all used variables in the 
proposed model are shown in Table 2. 

 

 
Figure 4. The diagram of the implemented GIS-based model using cellular automata and Markov chain 
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Table 2. All used variables in the proposed model 

Variable Type Category 

Land-use change Independent Dynamic 

Distance from the residential area Independent Dynamic 

Distance from the barren area Independent Dynamic 

Elevation Independent Static 

Slope Independent Static 

Aspect Independent Static 

River Independent Static 

Road Independent Static 

Water bodies Independent Static 

Initial land-use Independent Static 

 
After obtaining the final calibrated model, the simulation was 
performed to predict the future status of land-use changes. At 
this level, the model was run by using the observed land-use 
map in 2016 as the initial data. Because the model was trained 
by using the data of a period of 15 years, its accuracy cannot 
be guaranteed for periods over 15 years. Thus, the simulation 
process will go on for a 15-year period from 2016 to 2031. 
The final result of this level is a new land-use map that 
predicts the status of the two studied land-use classes in 2031. 
   Of note, some other land-use classes such as rangeland, 
jungle, agricultural farm and water bodies that were 
eliminated from this study due to environmental 
considerations. These land-use classes have significant 
ecological impacts on the ecosystem. For example, these 
regions might contain the concerned and endangered species 
or need to be protected because of some geological hazards 
such as soil erosion. Yousefi et al. (2018) [23] and Esnandeh 
and Kaboli (2019) [24] in separated studies investigated the 
conserved areas in Alborz province by considering biological 
and geological factors. Based on their results, some areas were 
determined to be considered as ecological conserved areas. In 
this study, all those regions were removed from the study area 
to avoid incompatibility of the results with environmental 
considerations. 
   For running the proposed model, DINAMICA EGO 4 was 
used. It is an appropriate tool to perform temporal-spatial 
simulations by utilizing many pre-defined modules and 
algorithms [25]. Extracting the land-use maps from the 
satellite images was done by using ENVI 5, and all pre- and 
post-processes on the maps were performed by ArcMap 10.3 
[26]. 
 
2.4. Cost and performance optimization 

After simulating the status of land-use map in 2031, a 
question arises, Which type of photovoltaic systems 
(concentrated or distributed) can provide much potential for 
electricity generation in the study area? In this study, it was 
considered that maximum 30 % of each land-use could be 
used to set up photovoltaic systems. This value was selected 
on the basis of consultation with experts and specialists in the 
relevant fields using DELPHI method. In DELPHI method, 
some experts were chosen and their opinions about a unique 
concept were gathered. Then, the obtained answers were 
analyzed and the modified concept was sent to the experts 

again. This process was iterated until the viewpoints of the 
experts would reach the point of convergence. In this study, 
22 experts were selected to do DELPHI method. The multi-
crystalline photovoltaic systems are common and have the 
high efficiency and it seems they will play the most important 
role in the future solar power systems [27]. In this study, it 
was assumed that all distributed and concentrated photovoltaic 
systems would use multi-crystalline technologies. This 
assumption was considered because the results were 
independent of the used technology, and then it is possible to 
make a comparison between the results. Thus, two types of 
common multi-crystalline photovoltaic systems were 
considered. The cost and power of each system are given in 
Table 3. 

 
Table 3. The cost and power for the concentrated and distributed 

photovoltaic systems considered in this study [28] 

Type of 
system 

Technology Size 
(m2) 

Power 
(Wh) 

Cost ($) 

Distributed 
photovoltaic 

module 

Multi-
crystalline 

1.6335 250 187.5 

Concentrated 
photovoltaic 

system 

Multi-
crystalline 

4047 250 × 104 500000 

 
   Although any form of technology can affect the 
environment, as it was said before, all protected regions were 
removed from the study area in this research; therefore, there 
was no direct conflict between the proposed technologies and 
the ecosystem. In this way, two target parameters including 
the cost of system and the performance of electricity 
generation were considered to analyze the introduced 
photovoltaic systems. In this study, higher performance means 
higher potential power of the photovoltaic system per a 
specified area. 
   In the following, an MCDM model was created by using 
WSM approach. In this method, several target functions are 
combined and a normalized weighted sum model is generated 
as a unique target function [29]. There are many different 
ways to choose the value of weights. In this study, these 
values were determined using the DELPHI method and the 
asked question from experts was whether minimizing the cost 
of system is more important than the performance of 
electricity generation, or vice versa. Then, all answers were 
gathered and the proportion of each choice to the total was 
determined as the weights. The used MCDM model for this 
study is represented as Equation 1. 

4
1 2

1 2

1 1

2 2

Objectives:
                  Max (250 × x + 250 × 10  × x )
                  Min (187.5 × x + 500000 × x )
Constraints:
                  1.6335 × x 0.3 × α
                  4047 × x 0.3 × α
        

≤
≤

1 2          x , x 0≥                               (1) 

where x1 is the number of distributed photovoltaic modules 
and x2 is the number of concentrated photovoltaic systems. 
The first objective is to maximize the generated power and the 
second objective is to minimize the cost of the system. α1 and 
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α2 are the area of the accessible residential and barren areas, 
respectively. The presented numbers in the model are the cost, 
size, and the power of the studied systems obtained from 
Table 3. The value of 0.3 indicates the maximum proportion 
of accessible areas of the proposed land-use classes. By 
considering the WSM method, the MCDM model is modified 
as Equation 2. 

4
1 2

1 2

1 1

2

Objectives:
                  Max φ  (250 × x + 250 × 10  × x ) 
                          ω × (187.5 × x + 500000 × x )
Constraints:
                  1.6335 × x 0.3 × α
                  4047 × x 0.

×
−

≤
≤ 2

1 2

3 × α
                  x , x 0≥                     (2) 

where φ and ω are the weights of the first and second 
objectives, respectively. Also, it should be noted that φ+ω=1 
due to normalizing the model. Finally, the modified model 
was solved by using LINGO 17.0, which is easy linear 
optimization software [30]. 
   The x1 and x2 are the decision variables of the optimization 
model. Simply, solving the model shows its sensitivity to 
these variables. Also, α1 and α2 are the outputs of the GIS-
based land-use changes model and their sensitivity was 
discussed in the previous section. On the other hand, all used 
variables in the optimization model, except the weights, had 
the same unit and indicated the area. This means the model is 
strongly dependent on the accessible area. The magnitude of 
this dependency is impacted by the values of the weights. 
Investigations showed changes in the weights led to different 
optimum scenarios. However, in this study, the values of the 
weights were determined by DELPHI method and they did not 
change the optimization model. The optimization model was 
intrinsically validated because the used photovoltaic systems 
were considered as separate modules. Simply put, each 
proposed photovoltaic system had specific cost, size, and 
power. Therefore, the cost, size, and power of the two systems 
are specified simply and there is no interaction between 
different systems. 
 
3. RESULTS AND DISCUSSION 

3.1. Results 

At the first level of simulation, a transition matrix between 
two land-use maps from 2001 to 2016 was calculated by using 
the Markov Chain and the result is shown in Table 4. The 
value of each cell is equivalent to the probability of the 
corresponding transition. The cells with a value of zero are 
shown with dashes. It means that the transition did not occur 
at a specific time interval. 

 
Table 4. The Markov chain transition matrix between land-use maps 

of 2001 and 2016 

 Barren area Residential area 

Barren area - 0.006988 

Residential area 0.000061 - 

 
   Then, the ancillary maps as the independent variables were 
added to model and using the anticipated transition matrix, the 
matrix of coefficients was calculated. The DINAMICA EGO 

software was employed to assess the significance of each 
variable per transitions by using the combination of 
Uncertainty Information Joint method and Regression method. 
Therefore, the variables that did not affect the results were 
removed and the final matrix of coefficients was recalculated. 
   After that, the model was run from 2001 for a fifteen-year 
period to simulate the land-use status in 2016 (Figure 5). 
Then, the validation between the simulated and observed 
maps in 2016 was executed by the reciprocal fuzzy similarity 
method. In this study, the size of the compared regions was 
modified from 1 to 33 cells. The compared regions are called 
moving window and the model accuracy is proved on a spatial 
scale. 

 

 

 
Figure 5. The observed and simulated land-use maps of Alborz 

province in 2016 
 
 

 
Figure 6. Similarity between observed and simulated land-use maps 

of Alborz province in 2016 
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As it can clearly be seen from Figure 6, the minimum 
similarity between compared maps grew and it was directly 
related to the size of the moving window. This increasing 
trend means that the model will give a more accurate result for 
an area with the bigger surface. In terms of ecology, it means 
that this model is more appropriate on landscape scales. 
   Because the model is sensitive to using independent 
variables, any changes in the number or type of these 

variables lead to variations in the accuracy. Therefore, in this 
study, no part of the model experienced any changes, except 
the initial land-use map. Thus, the final simulation was run 
from 2016 to 2031 to predict the new status of land-use 
classes. The result maps of 2024 and 2031 (as the sample of 
the outputs) are shown in Figure 7. Also, Table 5 shows the 
area of the land-use classes in the study area in the simulated 
years. 

 

  
Figure 7. The simulated land-use maps of Alborz province in 2024 and 2031 

 
 

Table 5. Area of the studied land-use classes in the simulated years in term of m2 

 
Year 

2001 2016 2024 2031 
Barren area 150371100 254601900 302352300 341973000 

Residential area 137493900 325665000 406314000 460677600 
 
   After finishing the simulation, the obtained areas had to 
investigate by considering the environmental conflicts. 
Because conserved areas were removed from all land-use 
maps in the data preparation process, there was not any 
environmental conflicts. Thus, the obtained land-use maps 
were used without any modification as the input for the 
optimization model. 
   In the following, due to making an MCDM model with 
WSM approach, the weight of objectives was determined 
using the DELPHI method. Based on the results of DELPHI 
method, the amount of power of the photovoltaic system was 
more significant than the cost of the system. Therefore, by 
calculating the proportions of answers, the weight of the first 
objective was considered as 0.73 (φ=0.73) and the weight of 
the second objective was determined as 0.27 (φ=0.27). 
Consequently, by considering the obtained weights and the 
area of land-use classes in 2031, the used optimization model 
(Equation 2) was modified as Equation 3. 

4
1 2

1 2

1

Objectives:
                  Max 0.73  (250 × x + 250 × 10  × x ) 
                          0.27 × (187.5 × x + 500000 × x )
Constraints:
                  1.6335 × x 0.3 × 460677600
                 

×
−

≤

2

1 2

 4047 × x 0.3 × 341973000
                  x , x 0

≤
≥                (3) 

   Finally, the optimization model was run by using LINGO. In 
this study, after 2 iterations, the model converged and the 
obtained results are represented in Table 6. 

 
Table 6. The results of the optimization model 

Variable Optimized value Description 

x1 84605620 The optimum number of 
distributed PV modules 

x2 25350.11 The optimum number of 
concentrated PV system 

 
3.2. Discussion 

In this study, to validate the simulation model, structural 
similarities between the observed and simulated data were 
analyzed using reciprocal fuzzy similarity method for the 
range from 900 square meters to 98 hectares (equals to 1 to 33 
cells for the moving window). By considering Figure 6, it can 
be concluded that the results for the regions with an area of 
900 square meters had about 30 % accuracy and it increased 
over 70 % for regions with an area of 29 hectares. It means 
that land-use simulation in the landscape scale resulted in 
more accurate result than the smaller scales. This finding is in 
compliance with some other similar studies [31]. Based on the 
results of simulation in 2031, the residential area will grow by 
approximately 2.3 times and in the same period, barren area 
will experience a growth by approximately 1.3 times. It seems 
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that these transitions occur because of population 
immigration. Also, from Table 3, the greatest value of the 
transition probability (0.006988) was related to the transition 
from the barren class to the residential class, and the lowest 
values (0.000061) were related to reverse transition. Clearly, it 
means that the study area will be faced with a high growth in 
the urban areas during the next years. Also, based on the 
validation results, a combination of cellular automata and 
Markov Chain was an effective approach to predicting the 
land-use changes and this result is similar to some other 
studies [32]. 
   By considering the optimization results, the optimum 
scenario consists of using both concentrated and distributed 
photovoltaic systems in 2031. In this way, the best choice for 
the study area is to set up the distributed photovoltaic modules 
in 18.37 % of accessible residential area and to install the 
concentrated solar farms in 0.74 % of accessible barren area in 
2031. It is noteworthy to say that this result is related to the 
assumption of using only 30 % of accessible areas and can 
change by modifying this assumption. Some similar studies 
denoted that concentrated photovoltaic systems were the best 
choice for the urban areas [33]. Some others indicated that 
distributed photovoltaic modules had the optimum 
performance in cities [34]. Also, the results of this study 
showed that selecting the optimum state for using the 
photovoltaic systems was completely dependent on land-use 
conditions. This finding is compatible with some other studies 
[35]. As a scenario for the future, the results of this study 
showed that if the process of land-use change continued as it 
is now, it is predicted that the study area needs to use both 
concentrated and distributed photovoltaic systems to meet 
lower cost and higher performance. 
   By combining the results of Table 6 and the data provided in 
Table 3, the optimum scenario shows that the study area needs 
to have about 52 million of the proposed distributed 
photovoltaic modules and about 7 concentrated photovoltaic 
systems. It is equivalently about 9.7 million dollars for the 
distributed photovoltaic modules and about 3.5 million dollars 
for concentrated photovoltaic systems. Also, the results 
showed that the distributed photovoltaic modules could 
generate about 13000 thousand kWh and for the concentrated 
photovoltaic systems, this amount is about 17.5 thousand 
kWh. It is obvious that the distributed photovoltaic system 
will have a greater share in supplying the solar electricity in 
the study area in 2031 by considering the proposed technology 
used in this study. By considering the average lifetime of the 
proposed photovoltaic systems about 20 years and the average 
price of sellback solar electricity about 0.8 dollar [36], the 
payback investment will be about 35 years. It means that if 
there will be no government financial support, the obtained 
scenario will not be efficient economically. On the other hand, 
as the technical feasible analysis, if the total power of the 
optimum scenario is provided only by the distributed 
photovoltaic modules, it needs about 10 million dollars and 
this value is about 2500 million dollars when the optimum 
scenario is performed only by the concentrated photovoltaic 
systems. Of note, although using the renewable energy 
systems is costly, they have many environmental and political 
benefits such as reduction of air pollutants, preventing the 
global warming, more energy safety, and providing new 
ecosystem services. Also, the invented technologies for 
renewable energy resources are enhanced and their 
performance will be increased, whereas their cost and size 
might be less. This means that the feasibility of this kind of 

technology will increase day by day. 
 
4. CONCLUSIONS 

Installing photovoltaic systems needs spatial places. Studies 
show that barren area and rooftops of buildings are two 
appropriate types of places. Before planning for the usage of 
renewable energy systems, this question of whether the 
proposed technology is a sustainable choice for the study area 
during a specific period of time needs be answered. In this 
study, Alborz as one of crowded provinces in Iran was 
selected as the study area. At first, a GIS-based model was 
created by using cellular automata and Markov Chain. The 
status of two land-use classes including the barren and 
residential areas was simulated by this model until 2031. After 
that, an optimization model with two economic and 
performance objectives was defined. Then, two common types 
of distributed and concentrated photovoltaic systems were 
considered and the optimum scenario was investigated for the 
study area in 2031 by combining the results of the GIS-based 
model and the optimization model. 
   The obtained results showed that the study area would 
encounter population increase in both of residential and barren 
areas until 2031; however, the greater growth belongs to the 
transition from barren area to the residential area. Also, the 
optimization results indicated that the optimum scenario 
consists the usage of both concentrated and distributed 
systems, simultaneously. The optimum scenario recommends 
setting up the distributed photovoltaic modules in 18.37 % of 
accessible residential area and installing the concentrated 
photovoltaic systems in 0.74 % of accessible barren area in 
2031 to achieve minimum cost and maximum generated 
power. Finally, although using the optimum scenario might 
have some environmental and political benefits such as more 
energy safety and reduction of air pollutants, if there is no 
government financial support, then the optimum scenario will 
not be efficient economically on the studied scale. 
   The main novelty of this study was related to use of the 
cellular automata for generating the required input data of the 
optimization model as an integrated method for future study 
of solar electricity. However, in this study, only two forms of 
technology were investigated. Therefore, it is recommended 
that in the similar studies, the possibility of using different 
technologies for solar electricity be discussed and the new 
results be compared with the results of this study. Also, it will 
be useful to investigate different percentages of accessible 
areas by considering different environmental and political 
considerations to achieve the optimum scenario. 
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NOMENCLATURE 

AHP Analytic Hierarchy Process 
COx Carbon Oxides 
ELECTRE Elimination Et Choix Traduisant la REalite 
GIS Geographic Information System 
LINGO A linear optimization models solver tool 
MCDM Multi Criteria Decision Making 
TOPSIS Technique for Order Preference by Similarity to Ideal 

Solution 
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WSM Weighted Summation Model 
Greek letters 
α1 Area of the accessible residential regions 
α2 Area of the accessible barren regions 
x1 Number of distributed photovoltaic modules 
x2 Number of concentrated photovoltaic systems 
φ Weight of the first objective 
ω Weight of the second objective 
Units 
m2 Squared meter 
$ USD 
Wh Watt-hour 
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