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A B S T R A C T  
 

Understanding of climate change and its impacts on river discharge has affected the quality and quantity of 
water and also supplying water requirements for drinking, agriculture and industry. Therefore, prediction of 
precipitation and temperature by climate models as well as simulation and optimization of their runoff with 
suitable models are very important. In this study, four climate models of the Fifth Coupled Model Inter 
comparison Project (CMIP5) and RCP8.5 scenario were used to forecast future precipitation and temperature 
for the next two periods including 2020-2052 and 2053-2085. Mean Observed Temperature-Precipitation 
(MOTP) method was used to reduce the uncertainty of climate models and the change factor method was used 
to downscale the climate data. Then, the Lumped-conceptual Identification of unit Hydrographs and 
Component flows from Rainfall, Evaporation and Stream flow data (IHACRES) model and multi-layer 
Artificial Neural Network (ANN) model were employed to estimate the effects of these parameters on the 
Khorramrood River runoff. The neural network model is written and implemented using Scikit-Learn library 
and the Python programming language. The comparison of performance of ANN models with different input 
variables like monthly precipitation, monthly precipitation of previous months, monthly discharge, monthly 
discharge of previous months, monthly temperature was made to find the best and most efficient network 
structure. The results showed that the precipitation in Khorramrood River basin based on the weighted 
combination model decreased by 8.18 % and 9.75 % in the first and the second periods, respectively, while the 
temperature increased by 1.85 and 4.22 °C, respectively. The discharge parameter in the calibration and 
validation period in the IHACRES model based on criteria to evaluate the parameters of Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), The Coefficient of Determination (R), and the Nash-Sutcliffe 
Efficiency (NSE) performed better than the artificial neural network model. However, due to the small 
differences of these changes, the predictions were performed for both periods and using both models and the 
results indicated that future discharge in the IHACRES model decreased by 12.72 % during the first period and 
by 20.3 % in the second period, while the model of artificial neural network showed decrease rates of 2.12 % 
and 6.97 %, respectively. 
 

https://doi.org/10.30501/jree.2021.257941.1162 

1. INTRODUCTION1 

Human activities are one of the most important factors 
affecting water resources planning and regional hydrology [1, 
2, 3]. Therefore, improving hydrological and regional climate 
simulation, especially precipitation and flow, is an important 
goal for meteorological and water professionals. Such 
improvements will increase the effectiveness of regional water 
resources planning and management and reduce flood and 
drought losses. Previous studies have shown that the slightest 
fluctuation in the probability or severity of precipitation has 
significant effects on runoff [4, 5]. There are three groups of 
hydrologic forecasting that have been used more than three 
decades: lumped conceptual models, models based on 
physical distributions, and empirical black box models [6]. 
There is a complex nonlinear relationship among discharge, 
precipitation, and temperature which affects the assessment 
climate change impacts on runoff [7]. Therefore, climate 
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change scenarios in the future are very important for water 
resources planning and management, agriculture and water 
users [8, 1]. Climate change as one of the major challenges of 
the twenty-first century has affected human society. Rapid 
population growth and industrial development as well as 
deforestation and environmental degradation have led to an 
increase in greenhouse gas emitted from Earth's surface in 
recent decades. The increasing trend of warming has caused 
the Earth's surface temperature to rise in the current century. 
The rate of temperature increase is predicted between 0.3 and 
4.8 °C under the four trends of greenhouse gas concentrations 
by 2100 [9]. The Fifth Assessment Report (AR5) of the 
Intergovernmental Panel on Climate Change (IPCC) in 2013 
showed that global warming caused a change in the water 
cycle due to increased greenhouse gas concentrations. The 
consequences of this phenomenon have different effects on 
water resources systems and various aspects of human life the 
most important of which can be the changes in the spatial and 
temporal distribution of precipitation and its type, surface 
runoff, evaporation, groundwater recharge, and sea level rise 
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which ultimately affect human settlements and agricultural 
production. It, therefore, requires that the impacts and 
consequences of climate change on water resources be 
seriously considered. In recent years, the effect of this 
phenomenon on different catchments on the surface of the 
earth has been investigated. Most researchers around the 
world have used the Fifth Assessment Report to study climate 
change under new emission scenarios in different regions [10, 
11, 12, 13, 3]. Some of them are listed below. 
 
2. LITRATURE REVIEW OF EXSISTING METHODS 

Tan studied the impacts of climate change on the Kalantan 
River in northeastern Malaysia. 36 Climate Change 
Downscaling Projects from five Atmospheric General 
Circulation Models (AGCMs) under three RCP Scenarios of 
2.6, 4.5 and 8.5 for two future periods from 2015-2044 and 
2045-2074 were studied with respect to the base period (1975-
2004) [13]. The results of the five atmospheric general 
circulation models show the increase of 1.2 to 8.8 % in annual 
precipitation and 0.6 to 2.2 °C at maximum temperature. 
Decision making on water management and construction and 
operation of hydraulic structures requires reliable information 
about the flow discharge in the river basin to facilitate 
decision-making according to design flood discharge. 
IHACRES model is one of the semi-conceptual rainfall-runoff 
models that could generate effective rainfall and runoff 
simulation with inadequate information. Water resources 
management is a key issue for sustainable development in the 
future in arid and semi-arid regions like Western Australia. In 
a study conducted in this area, IHACRES rainfall-runoff 
model based on problem physics and artificial neural network 
models was used to simulate the runoff of the Marillana Basin 
in the Pilbara region [14]. Sadeghi Loyeh simulated the 
rainfall-runoff process using two conceptual models including 
HEC-HMS and IHACRES, and three experimental artificial 
neural network models, namely Multivariate Regression 
(MLR), and Simple Linear Regression (SLR), and monthly 
runoff time series and meteorological data of Lighvan river in 
Iran during 1972-2004 were used [15]. Ghanbarpour 
simulated and estimated runoff of Kasilian Basin using ANN, 
ARMA, SWRRB, and IHACRES despite lack of sufficient 
meteorological information, and the results of the study 
showed the proper performance of IHACRES and artificial 
neural network [16]. Karamouz developed IHACRES and 
ANNs models for long-term runoff simulation in Southeastern 
Iran and then, the two models were compared. At first, the 
rainfall was predicted using climatic signals and then 
converted to runoff. Therefore, daily precipitation was 
downscaled using SDSM and LARS-WG methods and the 
outputs of these two models were selected as inputs of the 
rainfall-runoff IHACRES model to simulate runoff. In the 
neural network model, Sea Level Pressure (SLP), Sea Surface 
Temperature (SST), and Sea Level Pressure Changes (ΔSLP) 
and runoff were introduced as input parameters and two MLP 
and ELMAN networks were investigated. The results pointed 
to the better performance of MLP network than ELMAN in 
artificial neural network model [17]. Pourkheirolah used 
hydrological modeling to assess the impact of climate change 
on the hydrological conditions of Dehloran Station. In this 
study, Csirok3-5-0 model output under RCP8.5 scenario was 
used. Precipitation and temperature values for future period 
(2016-2044) were calculated using the downscaled change 
factor method and IHACRES model was used to simulate 

basin runoff. The results showed that the average runoff 
decreased from 6.27 m3/s in the base period to 5.78 m3/s in the 
future period. Also, simulation of monthly basin runoff in the 
future period and comparison of its values with the observed 
period shows average decline of long-term annual runoff in 
the future period in the desired scenario [15]. Sayahi first 
calibrated IHACRES hydrological model using APHRODITE 
precipitation network data and CHCN-CAMS temperature 
dataset for the basin. Then, by introducing the temperature 
and precipitation scenario 2.6 of the fifth report to the 
mentioned hydrological model, discharge variations in the 
basin are predicted for the future periods. The results showed 
the rise of 0.17 to 2 degrees Celsius and a 3 to 75 percent of 
rainfall variation during 2011-2035 period compared to the 
1983-2007 observation period. Runoff simulation results for 
the future period show the average annual runoff of 9.7 % 
compared to the observed period [18]. Hydrological models 
are vital and exigent tools for water resources and 
environmental planning and management. Three models of 
SWAT, IHACRES, and ANN were studied on daily, monthly, 
and annual bases in the Kan watershed, which were located in 
the west part of Tehran, Iran. ANN model showed a better 
performance for daily, monthly, and annual flow simulations 
compared with other two models (NSE=0.86, R2=0.87, 
RMSE=2.2, MBE=0.08) and particularly for the simulation of 
maximum and minimum flow values. In addition, the 
performance of SWAT model (NSE=0.65, R2=0.68, 
RMSE=3.3, MBE=-0.168) was better than that of the 
IHACRES model (NSE=0.57, R2=0.58, RMSE=3.7, 
MBE=0.049). However, the results of the IHACRES model 
were still acceptable [19]. 
   According to this review, the first goal of this work is to use 
IHACRES and ANNs to build a hydrologic model in basin 
under climatic conditions to simulate stream flow. These 
models are assessed on a basin scale and at monthly time 
intervals. To study climate change in the Kangavar region and 
its effects on the flow of the Khorramrood River, first, the 
suitable CMIP5 climate models for the region were selected. 
Then, these data were downscaled at the Aran station, and 
then the MLP neural network and the lumped-conceptual 
IHACRES models were compared to predict future discharge. 
A comparison of performance of ANN models with different 
input variables (e.g., monthly precipitation, monthly 
precipitation of previous months, and total precipitation of 
previous months, monthly temperature) has been made to find 
the best and most efficient network structure. In addition, their 
efficiency in the estimation of different ranges of flow (from 
very high to very low flow) is determined based on the Flow 
Duration Curve (FDC). To ensure the validity of the results, 
Aran station is in natural regime. Selecting an appropriate 
model to simulate the stream flow in a watershed is a key 
challenge, and analyzing the performance of these models in 
different climate scenarios could help researchers to apply the 
suitable model to each case. 
 
3. STEPS OF THE PROPOSED METHODOLOGY 

In this study, the rainfall and temperature data were first 
obtained from climate models and, then, downscaled for the 
target area to evaluate the discharge changes of Khorramrood 
River, which is a tributary of the Gamasiab River and, also, 
the Anahita Dam was built on it. Next, the discharge 
variations due to climate change in the Khorramrood River 
were estimated using artificial neural network and semi-
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conceptual IHACRES model (Fig. 1). Neural network 
modeling was done in the Python programming language and 
the Scikit-Learn Library. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flowchart of research 
 
3.1. Climatic and hydrometric data 

In order to study climate changes in the study area using RCP 
scenarios, monthly information of historical temperature and 
rainfall is required. Therefore, the Kangavar Synoptic Station 
information obtained over the course of 1983-2015 period, 
which is measured by Kermanshah Regional Meteorological 
Office, is used, as shown in Table 1. The measured 
quantitative monthly data including the flow discharge of 
Khorramrood River at Aran base station were obtained from 
Kermanshah Regional Water Authority, as shown in Table 2. 
 
3.2. Study area 

Kangavar County with an area of about 674 square kilometers 
is located in the east of Kermanshah province in West of Iran. 
Most western parts of Iran are composed of Zagros 

interconnected mountains and the fertile plain of Kangavar to 
the west of these highlands, which is located at an elevation of 
1457 meters above sea level. The Central Zagros Highlands 
has covered the northern and northwestern parts of this vast 
plain. Aran base station is located at 47.925 °E longitude and 
34.41 °N latitude. Much of precipitation occurs in December 
and January. The water in this region is supplied by rainfall 
stored in aquifers or from the many mirages of the area 
flowing into the rivers of Khorramrood, Asadabad, and 
Kangavar and the confluence of these rivers forms the    
water-filled Gamasiab River. Khoramrood River originates 
from southeast of Malayer highlands and joins Gamasiab 
River after irrigating agricultural land on its way to Hamadan 
and Kermanshah provinces (Fig. 2). 

 

 

 

 

 

 

 
Figure 2. Geographical location of the Khorramrood watershed in 

Kermanshah Province and Iran 

 
Table 1. Weather data of Kangavar synoptic station (1983-2015) 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Mean 
precipitation 

(mm) 

58 65 69 53 36 4 1 1 3 28 67 63 

Max 283 305 339 108 211 21 8 13 19 83 347 176 

Min 13 27 22 0 5 0 0 0 0 0 11 0 

Mean 
Temperature 

(°C) 

-0.06 2.32 6.97 2.96 16.85 22.53 26.5 25.8 20.76 14.8 12.08 7.78 

Max 4.47 6.87 11.0 7.28 20.06 25.87 29.8 28.3 23.89 17.6 15.41 10.87 

Min -8.65 -8.30 1.46 -1.22 13.70 18.61 23.36 22.21 17.97 12.80 9.94 5.54 

 
 

Table 2. Khorramrood River flow in 1983-2015 (m3/s) 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Mean flow (m3/s) 5.23 6.53 8.16 8.15 5.31 1.81 0.30 0.06 0.05 0.51 2.92 5.00 

 
3.3. Climate scenarios (RCP) 

At present, the most valid tool to generate climate scenarios is 
the Atmospheric-Ocean General Circulation Models 
(AOGCM) [20, 21]. The Intergovernmental Panel on Climate 

Change has used New RCP (Representative Concentration 
Pathways) scenarios as the trajectory of greenhouse gas 
concentrations to compile the Fifth Assessment Report (AR5). 
The new emission scenarios have four key trajectories called 
RCP2.6, RCP4.5, RCP6, and RCP8.5 that are named based on 
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Radiative Forcing in 2100 and can yield different levels of 
greenhouse gas emissions in any situation according to 
different characteristics of the technology level,               
socio-economic status, and future policies of a region. The 
variables in this scenario are: 

• Emissions of gases such as SF6, CFCs, PFCs, HFCs, 
N2O, CH4, CO2. 

• Emissions of chemically active gases and aerosols, 
Black Carbon (BC), SO2, NH3, organic carbon, VOCs, 
NOx, CO2, NH3. 

• The concentration of greenhouse gases including HFCs, 
PFCs, CFCs. 

• The concentrations of aerosols & chemically active 
gases (O3, aerosol). 

• Land use and land cover data. 

   These scenarios were formulated in 2014 by the Scientific 
Committee under the auspices of the Intergovernmental Panel 
on Climate Change to provide a set of information whose 
results can track the main factors in climate change [9]. The 
present study was conducted based on downscaling of CMIP5 
climate model data at Kangavar weather station and Aran 
Hydrometric station located in the Khorramrood River basin 
during the 33-year base period of 1983 to 2015. In order to 
create climate scenarios for the future 2020-2052 and 2053-
2085 periods, the results of four models of the IPCC Fifth 
Assessment Report (AR5) under RCP8.5 scenario are used 
which have different resolutions, as shown in Table 3. 

 
Table 3. AR5 models and their resolution 

Model (m  × m) 

CanESM2 128  × 64 

FIO-ESM 128  × 64 

GFDL-CM3 144  × 90 

MIROC-ESM-CHEM 128  × 64 

 
3.4. Uncertainty analysis with (MOTP) 

In this method, the AR5 models are weighted based on the 
standard deviation of simulated mean temperature and 
precipitation in the base period of the average observational 
data. 
 

Wi =  
( 1
∆Pi

)

∑ ( 1
∆Pi 

)N
i=1

                                                                                  (1) 

 
where Wi is weight of each model in the desired month and 
∆Pi is the Long-term mean deviation of the simulated rainfall 
by each model in the base period from the mean observational 
data. By assigning rainfall values instead of high 
temperatures, weights corresponding to rainfall variables are 
also obtained [22]. 
 
3.5. Downscaling 

The outputs of climatic models do not have the required 
accuracy of spatial and temporal analysis; therefore, the 
outputs of climate models need to be downscaled to the target 
area. Existing conventional downscaling methods including 
LARS-WG have not yet been updated for the new RCP 
scenarios and a number of primary variables of the SDSM 
method have not yet been prepared for AR5 models [23]. 

Therefore, the change factor method is considered for this 
study. In order to downscale the data locally, the proportional 
method was used whose climate variables simulated by 
AOGCM were extracted from the cellular information where 
the target area was located. The change factor method 
(Equations 2 to 5) was also used for temporal downscaling of 
the data [22]. 

 
∆Ti = T�AOGCM,Fut,i  −  T�AOGCM,Base,i   (2) 

∆Pi = ( 
P�AOGCM,Fut,i  

P�AOGCM,Base,i  
) (3) 

T =  TObs +  ∆T (4) 

P =  PObs ×  ∆P (5) 

 
   In Equation 2, ΔTi is the temperature variation for the   
long-term average of 33 years in each month, T�AOGCM,Fut,i is 
the simulated average temperature by each AOGCM in the 
future period for each month, T�AOGCM,Base,i is the simulated 
average temperature by each AOGCM in the observed period 
for each month, and the above items are considered for 
rainfall in Equation 3. In Equation 4, T is the time series 
derived from the climate temperature scenario for the future 
period, while Tobs is time series of the observed temperature 
in the base period (1983-2015). Equation 5 is time series of 
rainfall due to precipitation changes in Equation 3. 
 
3.6. Rainfall-runoff simulation 

Analysis of climate parameters variation on river discharge of 
the basin is possible using Rainfall-Runoff models. The 
changes in river discharge are important to satisfy water 
demands for agriculture, drinking, and industry demands. In 
this study, the IHACRES rainfall-runoff model and the 
artificial neural network model were employed to produce 
monthly runoff, and the results of both models were compared 
and the variations of climatic parameters on runoff were 
extracted. 
 
3.7. IHACRES model 

In IHACRES model, two nonlinear modulus reduction (loss) 
and linear unit hydrograph are used for runoff production. 
IHACRES model has two parts: (a) a part that converts 
rainfall at time k (rk) to effective rainfall (uk) (part of the 
rainfall that eventually enters the river) and the excess rainfall 
that is eventually removed by evapotranspiration (assuming 
the basin is impenetrable); (b) A linear conversion function 
(or UH unit hydrograph) that converts effective rainfall into 
the modeled flow (Xk). Here, these sections are called the loss 
section and the conversion function (unit hydrograph), 
respectively. The loss section is considered for all nonlinear 
rainfall-runoff processes on a watershed scale, while the 
conversion function is based on linear system theory. The 
IHACRES model has six parameters of which three 
parameters are related to the nonlinear loss section including 
(1/C), (wτ), and f, which are the watershed storage capacity, 
the time constant at which the watershed wetness decreases, 
and the basin temperature modulation factor, respectively. 
Meanwhile, the other three parameters corresponding to the 
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linear conversion function include τ (q) and τ (s), which are 
the times required for the fast and slow stream flows, and the 
V (S) represents the volume of the slow stream involved in the 
creation of the river. Examples of studies that have used 
IHACRES model can be found in the studies of [24], [25] and 
[26]. 
   In this research, observational data of temperature, 
precipitation, and monthly discharge in the base period were 
used for calibration purpose. First, the IHACRES model 
should be calibrated for the study area and after model 
calibration, the monthly runoff in the basin is predicted by 
introducing downscaled temperature and rainfall data of the 
climate models for the next two periods and finally, the results 
of the model performance are discussed. 
 
3.8. Artificial neural network (ANN) 

Artificial neural networks are one of the most widely used 
structures in artificial intelligence that can even be considered 
as the basis of branches of artificial intelligence. Artificial 
neural networks are the intersection of biology, psychology, 
mathematics, and computers. Today, these structures are used 
in various engineering and basic sciences to automate, 
classify, and estimate complex functions. Although the age of 
neural networks has not exceeded 80 years, its application has 
now expanded to such an extent that its role in the 
advancement of various scientific fields cannot be ignored 
[27]. The use of Python programming language libraries in the 
neural network facilitates very good prediction of parameters 
based on appropriate predictors. 
 
3.9. Multi-layer perceptron 

Two or more neurons can be combined into a single layer. A 
particular network itself can consist of multilayers in which 
each layer in the grid has its own weight matrix, bias vector, 
and output. Relation 6 shows the multi-layer perceptron 
formula where f is the nonlinear activation function; wj 
represents the weights of each layer; b is the bias, xj represents 
the inputs, and y is the target [28]. 
 
y = f(∑ wjxjj + b)                                                                            (6) 
 
   Python language now provides the best and most convenient 
algorithms for data analysis and artificial intelligence. The 
MLP method of scikit-learn library was used for this purpose. 
The codes are available on: 
https://github.com/maryamhafezparast. 
   Using following formula (Equation 7) helps determine the 
total number of hidden layers needed. 
 
Nh = Ns/(α∗ (Ni + No))                                                                       (7) 
 
where Ni is the number of input neurons, No the number of 
output neurons, Ns the number of samples in the training data 
set, and α an arbitrary scaling factor measured between 2-10. 
   In this study, the MLP multilayer perceptron networks with 
different hidden layers (Equation 7) and the number of 
neurons have been calibrated to model the runoff of 
Khorramrood River using artificial neural networks, which are 
widely used in hydrological modeling [29, 30]. 70 % of the 
data were considered for network training and 30 % for 
network testing period. Relation 8 was used to normalize the 
data [31]. 

Xnormal = �� Xt −Xmin

Xmax−Xmin
� × 2� + 1                                              (8) 

 
3.10. Performance criteria 

In order to compare and evaluate the performance of the 
studied models, Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), the coefficient of determination (R), 
and the Nash Sutcliffe coefficient (NSE) were used. 
 

RMSE = ( 
1
N �(P i − Oi)2)0.5

n

i=1

 
 

(9) 

MAE =  
1
N �|Pi −  Oi|

N

i=1

 
 

(10) 

R =  �
(∑ (P i − P�)(O i − O�))2n

i=1
∑ (P i − P�)2(O i − O�)2n
i=1

 
 

(11) 

NSE = 1 −  
∑ |Oi −  Pi|N
i=1

∑ |Oi −  O�i|N
i=1

 
 

(12) 

 
where n is the number of data, Oi is the observed values, Pi is 
the computational values by the model, and O�i and P� are the 
average observational and computational values by the model. 
 
4. RESULTS AND DISCUSSION 

The results of this study include downscaling results of 5 
CMIP5 climate change models that show rainfall and 
temperature values in the first and second future periods and 
then, the role of these input variables in producing 
Khoramrood River discharge is estimated using artificial 
neural network and IHACRES models. Next, the results of 
both models are compared and the advantages and 
disadvantages of these methods are compared with the results 
reported by other researchers. 
 
4.1. Reduction of uncertainty with MOTP 

As mentioned, the uncertainty of each model can be reduced 
using the MOTP method and a weighted combination model 
is obtained by considering the weight of different climatic 
models. In this case, the results of this model can be used to 
predict the parameters in the future as an average of all the 
models used in the research. Meanwhile, in this method, 
weights of rainfall and temperature parameters of each climate 
model were determined separately for each month, as 
presented in Tables 4 and 5. 
 
4.2. Comparing performance of climate models with 
observed data 

In this section, the error criterion for evaluating the 
performance of climate models was used in this study. These 
criteria include coefficient of determination (R2), the Nash 
Sutcliffe coefficient (NSE), Root Mean Square Error (RMSE), 
and Mean Absolute Error (MAE). The historical long-term 
averages of each climate model and the combined model were 
compared to observational data during the base period (1983-
2015), as shown in Tables 6 and 7. It is observed that the 
performance of the combined model and the climate models 
of the fifth report used in this study to simulate rainfall and 
temperature for the studied station shows a high correlation 
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coefficient with relatively low error indicators. Therefore, it 
can be concluded that all models have a good ability to 
simulate the climate variables of Khorramrood River basin 
and one can trust the output of models for the studied basin. It 

should be noted that the weighted combination model had 
better performance than the other models, but all models have 
generally good predictability in this basin. 

 
Table 4. Weight of each climate model for rainfall separated by months 

Models Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
MIROC 0.35 0.11 0.34 0.29 0.12 0.14 0.21 0.28 0.20 0.16 0.51 0.39 

CANSM2 0.21 0.11 0.21 0.21 0.17 0.27 0.17 0.17 0.20 0.43 0.15 0.30 
FIO 0.14 0.39 0.22 0.18 0.47 0.43 0.41 0.23 0.19 0.29 0.14 0.16 

GFDL 0.30 0.39 0.23 0.31 0.24 0.16 0.21 0.32 0.41 0.11 0.20 0.15 
 
 

Table 5. Weight of each climate model for the temprature separated by months 

Models Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
MIROC 0.34 0.22 0.23 0.28 0.23 0.22 0.20 0.24 0.18 0.20 0.20 0.19 

CANSM2 0.17 0.25 0.27 0.26 0.25 0.32 0.28 0.28 0.40 0.48 0.45 0.33 
FIO 0.24 0.20 0.18 0.21 0.26 0.24 0.23 0.19 0.19 0.15 0.15 0.21 

GFDL 0.25 0.33 0.31 0.25 0.27 0.22 0.28 0.29 0.23 0.17 0.20 0.27 
 
 

Table 6. Comparing performance criteria of climate models using the observed precipitation 

 Precipitation 
Models NSE MAE RMSE R 

Weighted Model 0.91 5.22 6.90 0.97 
MIROC-ESM-CHEM 0.86 7.41 8.96 0.97 

FIO-ESM 0.73 9.03 12.34 0.92 
GFDL-CM3 0.82 8.02 9.93 0.95 
CanESM2 0.75 9.52 12.03 0.92 

 
 

Table 7. Comparing performance criteria of climate models by the observed temperature 

 Temperature 
Models NSE MAE RMSE R 

Weighted Model 0.97 1.23 1.3 0.99 
MIROC-ESM-CHEM 0.97 1.37 1.45 0.99 

FIO-ESM 0.97 1.49 1.54 0.99 
GFDL-CM3 0.97 1.1 1.27 0.99 
CanESM2 0.98 1.106 1.21 0.995 

 
4.3. Prediction of temperature and precipitation with 
climate models 

After downscaling the data for each climate model, the rainfall 
and temperature of each model and also the number of 
changes in these parameters (during the first and second future 
periods) with observational value could be observed. In Figs. 
(3, 4), rainfall and temperature variations for each model are 
specified as column chart and the observational value and 
weighted combination model for periods (2020-2052) and 
(2053-2085) are linear chart. 
   The results of the rainfall parameter under RCP 8.5 scenario 
showed that some models such as CanESM2, FIO-ESM, 
GFDL-CM3, and weighted combination model have predicted 
decreases of 13.86 %, 2.65 %, 23.47 %, 8.18 % in the first 
period compared to the base period. In the second period, this 
trend continues: CanESM2 model (6.61 %), FIO-ESM model 
(9.25 %), GFDL-CM3 model (26.33 %), and weighted 
combination model were reduced by 9.75 % compared to the 
base period. However, the MIROC-ESM-CHEM model 
showed an increase of 6.66 % for both first and second 
durations. 

 
Figure 3. Rainfall changes in climate models under Scenario 8.5 

0

20

40

60

80

100

jan feb mar apr may jun jul aug sep oct nov dec

Pr
ec

ip
ita

tio
n 

(m
m

)

Month

2020-2052 CanESM 2020-2052 FIO

2020-2052 GFDL 2020-2052 MIROC

2053-2085 CanESM 2053-2085 FIO

2053-2085 GFDL 2053-2085 MIROC

observed 2020-2052 weighted model

2053-2085 weighted model



M. Hafezparast and S. Marabi / JREE:  Vol. 8, No. 3, (Summer 2021)   75-85 
 

81 

0

5

10

15

20

25

30

35

40

jan feb mar apr may jun jul aug sep oct nov dec

Te
m

pe
ra

tu
re

 (o C
)

Month

2020-2052 CanESM 2020-2052 FIO
2020-2052 GFDL 2020-2052 MIROC
2053-2085 CanESM 2053-2085 FIO
2053-2085 GFDL 2053-2085 MIROC
observed 2020-2052 weighted model
2053-2085 weighted model

Figure 4. Temprature changes in climate models under Scenario 8.5 
 
In the spring, the longest difference in long-term rainfall is 
observed in March using GFDL-CM3 model during 2053-
2085 period. The results of the temperature predicted by 
climate models used for Khorramrood river basin have 
generally predicted an increasing temperature trend in which 
the increasing changes in the second future period are much 
more than the first period. In the first period, CanESM2,   
FIO-ESM, GFDL-CM3, MIROC-ESM-CHEM, and weight 
combination model increased 1.5, 1.21, 2.69, 1.66 and       
1.85 °C, respectively, compared to the base period. In the 
second period, CanESM2 of 4.58 °C, FIO-ESM of 2.48 °C, 
GFDL-CM3 of 5.54 °C, MIROC-ESM-CHEM of 3.73 °C, 
and weight combination model increased by 4.22 °C 
compared to the base period. 
 
4.4. Calibration and verification of IHACRES 

In order to calibrate and validate the IHACRES rainfall-runoff 
model, it was tested for model calibration for several years. 
The results indicated that the period 1988, 2006 to 7, 12 
correlated well with the observation period. After calibrating 
the model and parameters of the rainfall-runoff model, the rest 
of the data were employed to validate the model. The 
calibration parameters of the IHACRES model are shown in 
Table 8. 
   The simulation results of the IHACRES model for 
calibration and validation periods are presented in Figures 5 
and 6. Comparative results of the simulated and observed 
runoff hydrographs pointed to a good compatibility between 
hydrographs. Meanwhile, the IHACRES model has simulated 
the occurrence time of peak discharge well. Validation of 
model results is essential to increasing user confidence for 
model simulation capability. Therefore, without changing the 
values of the input parameters, the calibrated model was used 
for the validation period. 

 

Table 8. The calibration coefficients of IHACRES model 

Optimum 
value 

Description Parameter 

0.0024 Humidity storage capacity C 
1 Drying time T(W) 

2.4 Watershed temperature coefficient F 
0 Humidity threshold coefficient I 
1 Soil humidity intensity P 

-0.198 Drought index a(s) 
2.25 Peak index B(s) 

0.617 Slow-down flow T(s) 
2.8 Volume ratio V(s) 
20 Reference temperature Tref 

 
 

 
Figure 5. The simulated and observed runoffs during the calibration 

period for the IHACRES model 
 
 

 
Figure 6. The simulated and observed runoffs during the validation 

period for the IHACRES model 
 
4.5. Calibration and verification of ANN 

The number of neurons in the input and output layers is 
determined by the nature of the problem under investigation. 
In this study, the number of neurons in the hidden layer was 
determined through trial and error in order to reduce the error. 
The process began with a small number of neurons and 
additional neurons were added until increase in the number of 
neurons had no effect on error recovery. The characteristics of 
the chosen network to simulate runoff using artificial neural 
network are listed in Table 9. The results showed that having 
only one hidden layer was better than more hidden layers and 
this could be due to the lack of direct correlation between the 
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middle layers with the network output and the minor impact of 
the middle layer changes on weight adjustment. Finally, the 
outputs of the selected models were compared with the 
observed values and the optimal model was selected. 

 
Table 9. Properties of the selected ANN model 

Model characteristic 
P(t) , P(t-1) ,Q(t-1),Q(t-2) Input variable 

Q(t) Target 
MLP  Network 

70 Percentage of verification 
30 Percentage of calibration 
1 Number of hidden layers 

13 Number of neurons in the hidden 
layer 

2000 Number of iterations 
 
   Figures 7 and 8 show the observed and simulated 
hydrographs during the calibration and validation periods in 
the selected ANN model. The simulated discharge at the peak 
points overlapped well with the observed data, but the 
monthly patterns of discharge variations are weaker during the 
calibration and validation periods. 

 

 
Figure 7. Observed and simulated runoffs for duration of calibration 

for the ANN model 
 
 

Figure 8. Observed and simulated runoffs for validation duration for 
ANN model 

 
   According to [32, 33] studies, model simulation can be 
recognized satisfactorily when the R2 statistical index is more 
than 0.6 and the Nash-Sutcliffe efficiency (NSE) is greater 

than 0.5, which was used as a criterion for evaluating 
hydrological models in the studies conducted by [34], [35], 
[36], and [37]. After calibrating the artificial neural network 
models and IHACRES, the results of the models were 
compared. In both models, acceptable results were obtained in 
the calibration phase; however, the artificial neural network 
model in the validation phase reportedly achieved weaker 
values than the IHACRES model, as shown in Table 10. 

 
Table 10. Comparing performance criteria in ANN and IHACRES 

Performance criteria R2 RMSE MAE NSE 
ANN Calibration 0.82 2.33 1.46 0.6 

Verification 0.64 3.01 2.18 0.51 
IHACRES Calibration 0.9 2.08 1.29 0.71 

Verification 0.84 2.24 1.39 0.61 
 
4.6. Prediction of runoff with IHACRES model 

Following the calibration and validation of artificial neural 
network and IHACRES models, without changing the model 
parameters and only by changing the model inputs including 
rainfall and temperature of climate models, the river discharge 
during the first and second periods was predicted. For the 
forecast period, only the downscaled output of the weight 
combination model as a selected climate scenario was used. 
Figures 9 and 10 show the predicted rainfall against the 
predicted discharge for the RCP8.5 scenario. 

 

 
Figure 9. Predicted discharge of IHACRES model against 

precipitation in (2020-2053) 
 
 

 
Figure 10. Predicted discharge of IHACRES model against 

precipitation in (2053-2085) 
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4.7. Prediction of runoff with ANN model 

The prediction of discharge during the first and second 
periods for the weighted combination model was also done 
using the artificial neural network model. Figures 11 and 12 
show the amount of rainfall predicted by Scenario 8.5 for the 
first and second periods against the predicted discharge. The 
results indicate that the neural network model has predicted 
more discharge than the IHACRES. Therefore, the long-term 
average discharge in the neural network model during the first 
period is 0.35, while during the second period is 0.44 cubic 
meters per second. 

 

 
Figure 11. Predicted discharge of ANN model against precipitation 

in (2020-2052) 
 
 

 
Figure 12. Predicted discharge of ANN model against precipitation 

in (2053-2085) 

   The results of the statistical characteristics of the discharge 
prediction in these models show decrease in discharge 
compared to the observation period in both models and both 
periods. The IHACRES model predicts a decrease of 12.72 % 
in the first period and 20.3 % in the second period, while the 
ANN model predicts a decrease of 2.12 % during the first 
period and 6.97 % during the second period. 
 
4.8. Comparison of long-term monthly averages 

In order to better analyze the output results of hydrological 
models, the monthly long-term average of the river flow was 
extracted. In both models and in both periods, a sharp 
decrease in peak discharge in March, April, and May of about 
five cubic meters per second is evident. While the peak flow 

in October and November shows a sharp increase of about 
three cubic meters per second in Figure 13. 

 

 
Figure 13. Comparison of long-term monthly averages of discharg 

 
4.9. Comparison of models with duration curves 

Flow Duration Curve (FDC) is a classic method used to 
graphically represent the relationship between frequency and 
flow rate. Various factors are involved in the shape (FDC) 
including climatic parameters and basin physiology  . Figure 14 
presents the flow duration curve for each category of flow 
range based on the quantile-domain model comparison. The 
results show that both the semi-conceptual and data-driven 
models underestimate the peak discharge of the catchments 
under climate change, which is related to the decrease in 
rainfall and increase in temperature in the context of climate 
change in the region. The FDC diagram shows that in the 
observed discharge mode, 10 % of the time, the flow is more 
than 90 cubic meters per second, while in the predicted 
discharge, it is more than 6 cubic meters per second. In 
general, the river is dry 25 % of the time. The results of this 
investigation of a specific study basin with monthly flow 
comparisons may not be applicable for the selection of robust 
rainfall-runoff models for climate change assessment studies. 
Therefore, climate change impact in the study basin should be 
assessed with more conceptual, distributed, and data-driven 
models together. 

 

 
Figure 14. Flow duration curves of the observed and predicted flows 
 
5. CONCLUSIONS AND REMARKS 

The need for river discharge variations in the present and 
future periods is very important to satisfy the demands for 
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drinking, industry, and agriculture and studying these 
variations for future periods using CMIP5 climate models is a 
good option. The output of these models often includes 
meteorological variables and hydrological models play an 
important role in applying the effects of these climate 
variables to river runoff. Therefore, in this study, the results of 
a semi-conceptual hydrological and MLP artificial neural 
network models were evaluated and predicting future 
discharge was performed with both models. The results also 
showed a decrease runoff in the future for both models, but 
Artificial neural network model predicts generally more 
discharge in the future than IHACRES model and since the 
IHACRES model in this study shows more accurate 
quantitative evaluation criteria during the calibration and 
validation period, it is more acceptable to predict the future 
period. 
   Since the simulation and prediction of river discharge with 
IHACRES and ANN models has been done in some parts of 
the world, the present research attempts to compare the results 
of researchers who used these models with the results 
obtained from this study. In this way, a study by [16] 
predicted stream flow in Kasilian watershed in northern Iran 
and demonstrated that neural network and IHACRES models 
outperformed autoregressive integrated moving average and 
deseasonalized autoregressive moving average models which 
is in line with the results of the present study. The results of 
comparison of hydrological models for evaluating water 
resources in a low-data area by [38] showed that the selected 
simple conceptual models (GR4J and IHACRES) had a better 
daily performance than the more complex model (SWAT). 
The results of the present study also indicate that the 
IHACRES model has a good ability to simulate monthly 
runoff. 
   However, the use of climate models of the fifth scenario in 
hydrology has been evaluated since 2013 at the same time 
with their release [9]. Zulkarnain [39] showed that the 
performance of the multilayer neural network model was 
better than the IHACRES model, and this model could 
simulate runoff using the rainfall inputs and rainfall of 
previous months as well as runoff that occurred in previous 
months, which is not in line with the present study . In another 
study [40] found that the ANN model could simulate observed 
runoff and evaluated the comparison of IHACRES and neural 
network models for daily river discharge, but cannot keep the 
trends in daily and annual series. The present study also 
mentions this point about the artificial neural network model 
which failed to simulate the behavioral pattern of the observed 
time series. Ahooghalandari evaluated that the ANN was 
introduced as a good option for complex hydrological 
systems. Also, data derived from two adjacent stations were 
employed to improve the results of artificial neural networks 
compared to the IHACRES model, which is in line with the 
present study [14]. The results of the present study are also in 
line with the research of [17] who found that IHACRES 
performance was better than the ANN model, even though it 
was a more data intensive model than the ANN model. In 
doing so, three models of SWAT, IHACRES, and ANN on 
daily, monthly, and annual bases in the Kan watershed are 
used by [19]. According to the results, the performance of the 
three considered models is generally suitable for rainfall-
runoff process simulation; however, ANN model exhibits a 
better performance for daily, monthly, and annual flow 
simulations than other two models. 
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