Document Type : Research Article

Authors

1 Department of Chemical Engineering, University of Ilorin, P. O. Box: 1515, Ilorin, Nigeria

2 Department of Chemical Engineering, Landmark University Omu-aran, Kwara, Nigeria

3 Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. O. Box: 5025, Awka, Nigeria

10.30501/jree.2023.384691.1553

Abstract

Polystyrene waste is a significant environmental problem, and recycling and repurposing it can reduce its impact on the environment. Chicken feather biochar, on the other hand, is a by-product of the poultry industry and can be repurposed to produce bio-composites. The goal of this work was to turn waste chicken feathers into biochar and then, create composites with the biochar acting as the filler and a polystyrene-based resin acting as the matrix. The biochar was prepared with the aid of a top-lit updraft reactor. Composites were fabricated using different mixing ratios of biochar (10-40%) and polystyrene resin. The composites were then analyzed using FTIR, SEM-EDX, and hardness tests. SEM examination demonstrated that the biochar was distributed unevenly throughout the matrix. The alterations and shifts in peak positions shown by FTIR measurement indicated that there was a chemical interaction between the matrix and the biochar. It also revealed the hydrophilic nature of the composite. Hardness test showed that 20% biochar concentration gave the optimum hardness property (139 HRB). The EDX result demonstrated that the matrix as well as the composites consisted majorly of carbon atoms. The results of this study indicate the potential of using chicken feather biochar as a filler material to improve the mechanical and microstructural properties of recycled polystyrene-based bio-composites. This approach can provide a sustainable and environmentally-friendly solution to repurpose waste materials from poultry and plastic industries.

Keywords

Main Subjects

  1. Adeniyi, A., Abdulkareem, S., Ndagi, M., Abdulkareem, M., & Ighalo, J. (2022a). Effect of fiber content on the physical and mechanical properties of plantain fiber reinforced polystyrene composite. Advances in Materials and Processing Technologies, 8(4), 4244-4256. https://doi.org/10.1080/2374068X.2022.2054583
  2. Adeniyi, A., Iwuozor, K., Emenike, E., Amoloye, M., Aransiola, E., Motolani, F., & Kayode, S. (2023a). Prospects and problems in the development of biochar-filled plastic composites: a review. Functional Composites and Structures. https://doi.org/1088/2631-6331/acb19b
  3. Adeniyi, A., Odimayomi, K., Emenike, E. C., Iwuozor, K., & Ndagi, M. (2023b). Preparation of activated carbon monolith from waste biomass using solvated polystyrene-based binder. Advances in Materials and Processing Technologies, 1-13. https://doi.org/10.1080/2374068X.2023.2189679
  4. Adeniyi, A. G., Abdulkareem, S. A., Adeyanju, C. A., Abdulkareem, M. T., Iwuozor, K. O., Emenike, E. C., & Ndagi, M. (2023c). Mechanical and morphological analyses of flamboyant seed pod biochar/aluminium filings reinforced hybrid polystyrene composite. Journal of the Indian Academy of Wood Science, 1-9. DOI https://doi.org/10.1007/s13196-023-00311-4
  5. Adeniyi, A. G., Abdulkareem, S. A., Adeyanju, C. A., & Ighalo, J. O. (2022b). Recycling of delonix regia pods biochar and aluminium filings in the development of thermally conducting hybrid polystyrene composites. Journal of Polymers and the Environment, 30(8), 3150-3162. https://doi.org/10.1007/s10924-022-02413-5
  6. Adeniyi, A. G., Abdulkareem, S. A., Emenike, E. C., Abdulkareem, M. T., Iwuozor, K. O., Amoloye, M. A., Ahmed, I. I., & Awokunle, O. E. (2022c). Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results in Engineering, 14, 100423. https://doi.org/10.1016/j.rineng.2022.100423
  7. Adeniyi, A. G., Abdulkareem, S. A., Ighalo, J. O., Abdulkareem, M. T., Iwuozor, K. O., & Emenike, E. C. (2022d). A study on the hybrid polystyrene composite filled with elephant-grass-biochar and doped-aluminium-content. Functional Composites and Structures, 4(3), 035006. https://doi.org/1088/2631-6331/ac8ddf
  8. Adeniyi, A. G., Abdulkareem, S. A., Ighalo, J. O., Oladipo-Emmanuel, F. M., & Adeyanju, C. A. (2021). Microstructural and mechanical properties of the plantain fiber/local clay filled hybrid polystyrene composites. Mechanics of Advanced Materials and Structures, 1-11. https://doi.org/10.1080/15376494.2021.1992692
  9. Adeniyi, A. G., Abdulkareem, S. A., Ighalo, J. O., Saliu, O. D., Amosa, M. K., & Momoh, R. O. (2022e). Crystallographic, functional group and microstructural properties of oil palm biochar reinforced hybrid polystyrene composite doped with aluminium. Advances in Materials and Processing Technologies, 8(3), 2893-2904. https://doi.org/10.1080/2374068X.2021.1945288
  10. Adeniyi, A. G., Abdulkareem, S. A., Iwuozor, K. O., Abdulkareem, M. T., Adeyanju, C. A., Emenike, E. C., Ndagi, M., & Akande, O. J. (2022f). Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mechanics of Advanced Materials and Structures, 1-10. https://doi.org/10.1080/15376494.2022.2059822
  11. Adeniyi, A. G., Abdulkareem, S. A., Iwuozor, K. O., Ogunniyi, S., Abdulkareem, M. T., Emenike, E. C., & Sagboye, P. A. (2022g). Effect of salt impregnation on the properties of orange albedo biochar. Cleaner Chemical Engineering, 3, 100059. https://doi.org/10.1016/j.clce.2022.100059
  12. Adeniyi, A. G., Abdulkareem, S. A., Odimayomi, K. P., Emenike, E. C., & Iwuozor, K. O. (2022h). Production of thermally cured polystyrene composite reinforced with aluminium powder and clay. Environmental Challenges, 9, 100608. https://doi.org/10.1016/j.envc.2022.100608
  13. Adeniyi, A. G., Abdulkareem, S. A., Odimayomi, K. P., Iwuozor, K. O., & Emenike, E. C. (2023d). Microstructural and thermal properties of thermally cured calcined cow bone/kaolin filled hybrid polystyrene composites. Asia‐Pacific Journal of Chemical Engineering, e2898. https://doi.org/ https://doi.org/10.1002/apj.2898
  14. Adeniyi, A. G., Adeyanju, C. A., Emenike, E. C., Otoikhian, S. K., Ogunniyi, S., Iwuozor, K. O., & Raji, A. A. (2022i). Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environmental Challenges, 9, 100630. https://doi.org/10.1016/j.envc.2022.100630
  15. Adeniyi, A. G., Adeyanju, C. A., Iwuozor, K. O., Odeyemi, S. O., Emenike, E. C., Ogunniyi, S., & Te-Erebe, D. K. (2023e). Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technologies and Environmental Policy, 25(3), 937-947. https://doi.org/10.1007/s10098-022-02415-w
  16. Adeniyi, A. G., Amusa, V. T., Emenike, E. C., & Iwuozor, K. O. (2022j). Co-carbonization of waste biomass with expanded polystyrene for enhanced biochar production. Biofuels, 1-9. https://doi.org/10.1080/17597269.2022.2161133
  17. Adeniyi, A. G., Amusa, V. T., Iwuozor, K. O., & Emenike, E. C. (2022k). Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Cleaner Engineering and Technology, 11, 100564. https://doi.org/10.1016/j.clet.2022.100564
  18. Adeniyi, A. G., Emenike, E. C., Iwuozor, K. O., & Saliu, O. D. (2023f). Solvated polystyrene resin: a perspective on sustainable alternative to epoxy resin in composite development. Materials Research Innovations, 1-13. https://doi.org/10.1080/14328917.2023.2199597
  19. Adeniyi, A. G., Iwuozor, K. O., Emenike, E. C., Ogunniyi, S., Amoloye, M. A., & Sagboye, P. A. (2023g). One-step chemical activation for the production of engineered orange peel biochar. Emergent Materials, 6(1), 211-221. https://doi.org/10.1007/s42247-022-00442-3
  20. Adeniyi, G. A., Abdulkareem, S. A., Adeyanju, C. A., Iwuozor, K. O., Ogunniyi, S., Kawu, K. Y., & Emenike, E. C. (2022l). Recovery of Metallic Oxide Rich Biochar from Waste Chicken Feather. Low-carbon Materials and Green construction, 1,7. https://doi.org/10.1007/s44242-022-00002-2
  21. Afifah, H., Hidayat, N., & Wignyanto, W. (2018). Penentuan Isolat Bakteri Asetogenik yang Mampu Menghasilkan Total Asam Tertinggi pada Pengolahan Limbah Cair Tahu secara Anaerob. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 7(1), 47-56. https://doi.org/10.21776/ub.industria.2018.007.01.6
  22. Al-Khatib, I. A., Eleyan, D., & Garfield, J. (2015). A system dynamics model to predict municipal waste generation and management costs in developing areas. The Journal of Solid Waste Technology and Management, 41(2), 109-120. https://doi.org/10.1177/0734242X13490981
  23. Ali, M. F., Hossain, M. S., Moin, T. S., Ahmed, S., & Chowdhury, A. S. (2021). Utilization of waste chicken feather for the preparation of eco-friendly and sustainable composite. Cleaner Engineering and Technology, 4, 100190. https://doi.org/10.1016/j.clet.2021.100190
  24. Amulya, K., Katakojwala, R., Ramakrishna, S., & Mohan, S. V. (2021). Low carbon biodegradable polymer matrices for sustainable future. Composites Part C: open access, 4, 100111. https://doi.org/10.1016/j.jcomc.2021.100111
  25. Aranberri, I., Montes, S., Azcune, I., Rekondo, A., & Grande, H.-J. (2017). Fully biodegradable biocomposites with high chicken feather content. Polymers, 9(11), 593. https://doi.org/10.3390/polym9110593
  26. Aringbangba, O. E., Oluwafemi, F., Kolapo, A. L., Adeogun, A. I., & Popoola, T. O. (2021). Elimination of Aflatoxins from Two Selected Nigerian Vegetable Oils using Magnetic Chitosan Nanoparticles. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 10(1), 1-11. https://doi.org/10.21776/ub.industria.2021.010.01.1
  27. Chaturvedi, V., Agrawal, K., & Verma, P. (2021). Chicken feathers: a treasure cove of useful metabolites and value-added products. Environmental Sustainability, 4, 231-243. https://doi.org/10.1007/s42398-021-00160-2
  28. Chen, H., Li, W., Wang, J., Xu, H., Liu, Y., Zhang, Z., Li, Y., & Zhang, Y. (2019). Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: selective adsorption and influence of dissolved organic matter. Bioresource technology, 292, 121948. https://doi.org/10.1016/j.biortech.2019.121948
  29. DeFlorio, W., Liu, S., White, A. R., Taylor, T. M., Cisneros‐Zevallos, L., Min, Y., & Scholar, E. M. (2021). Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria. Comprehensive reviews in Food Science and Food safety, 20(3), 3093-3134. https://doi.org/10.1111/1541-4337.12750
  30. Emenike, E. C., Iwuozor, K. O., Agbana, S. A., Otoikhian, K. S., & Adeniyi, A. G. (2022a). Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Cleaner Environmental Systems, 6, 100094. https://doi.org/10.1016/j.cesys.2022.100094
  31. Emenike, E. C., Ogunniyi, S., Ighalo, J. O., Iwuozor, K. O., Okoro, H. K., & Adeniyi, A. G. (2022b). Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresource Technology Reports, 19, 101195. https://doi.org/10.1016/j.biteb.2022.101195
  32. Gabriel, A. A., Solikhah, A. F., Rahmawati, A. Y., Taradipa, Y. S., & Maulida, E. T. (2021). Potentials of Edible Canna (Canna edulis Kerr) Starch for Bioplastic: A Review. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 10(2), 182-191. https://doi.org/10.21776/ub.industria.2021.010.02.9
  33. Ghani, S. A., Tan, S. J., & Yeng, T. S. (2013). Properties of chicken feather fiber-filled low-density polyethylene composites: The effect of polyethylene grafted maleic anhydride. Polymer-Plastics Technology and Engineering, 52(5), 495-500. https://doi.org/10.1080/03602559.2012.762018
  34. Ismawanti, R. D., Putri, W. D. R., Murtini, E. S., & Purwoto, H. (2020). Edible Film Made of Corn Starch-Carrageenan-Rice Bran: The Characteristic of Formula's Viscosity, Water Content, and Water Vapor Transmission Rate. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 9(3), 173-183. https://doi.org/10.21776/ub.industria.2020.009.03.2
  35. Joardar, J., & Rahman, M. (2018a). Poultry feather waste management and effects on plant growth. International Journal of Recycling of Organic Waste in Agriculture, 7, 183-188. https://doi.org/10.1007/s40093-018-0204-z
  36. Joardar, J., & Rahman, M. (2018b). Poultry feather waste management and effects on plant growth. International Journal of Recycling of Organic Waste in Agriculture, 7(3), 183-188. https://doi.org/10.1007/s40093-018-0204-z
  37. Karuppannan, S. K., Dowlath, M. J. H., Raiyaan, G. D., Rajadesingu, S., & Arunachalam, K. D. (2021). Application of poultry industry waste in producing value-added products—A review. Concepts of Advanced Zero Waste Tools, 91-121. https://doi.org/10.1016/B978-0-12-822183-9.00005-2
  38. Mendez-Hernandez, M. L., Salazar-Cruz, B. A., Rivera-Armenta, J. L., Estrada-Moreno, I. A., & Chavez-Cinco, M. Y. (2018). Preparation and characterization of composites from copolymer styrene-butadiene and chicken feathers. Polímeros, 28, 368-372. https://doi.org/10.1590/0104-1428.08217
  39. Mochane, M., Mokhena, T. C., Mokhothu, T., Mtibe, A., Sadiku, E., Ray, S. S., Ibrahim, I., & Daramola, O. (2019). Recent progress on natural fiber hybrid composites for advanced applications: A review. https://doi.org/10.3144/expresspolymlett.2019.15
  40. Muduli, S., Champati, A., Popalghat, H. K., Patel, P., & Sneha, K. (2019). Poultry waste management: an approach for sustainable development. Int J Adv Sci Res, 4, 08-14. https://doi.org/https://www.researchgate.net/profile/Soubhagya-Muduli/publication/332092544_Poultry_waste_management_An_approach_for_sustainable_development/links/5c9f10ee92851cf0aea0ca3b/Poultry-waste-management-An-approach-for-sustainable-development.pdf
  41. Odeyemi, S. O., Iwuozor, K. O., Emenike, E. C., Odeyemi, O. T., & Adeniyi, A. G. (2023). Valorization of waste cassava peel into biochar: An alternative to electrically-powered process. Total Environment Research Themes, 6, 100029. https://doi.org/10.1016/j.totert.2023.100029
  42. Okonkwo, E., Daniel-Mkpume, C., Ude, S., Onah, C., Ijomah, A., & Omah, A. (2019). Chicken feather fiber—African star apple leaves bio-composite: Empirical study of mechanical and morphological properties. Materials Research Express, 6(10), 105361. https://doi.org/1088/2053-1591/ab3f60
  43. Onyekachi, O. E., & Iwuozor, K. O. (2019). Mechanical and water absorption properties of polymeric compounds. American Journal of Mechanical and Materials Engineering, 3(2), 36-46. https://doi.org/10.11648/j.ajmme.20190302.12
  44. Pulungan, M. H., & Santoso, E. S. M. (2020). Ice cream cup production using purple sweet potato (Ipomoea batatas L. Poir) as a substitute ingredient. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 9(3), 184-194. https://doi.org/10.21776/ub.industria.2020.009.03.3
  45. Rajak, D. K., Pagar, D., Behera, A., & Menezes, P. L. (2022). Role of Composite Materials in Automotive Sector: Potential Applications. Advances in Engine Tribology, 193-217. https://doi.org/10.1007/978-981-16-8337-4_10
  46. Rajeshkumar, G., Seshadri, S. A., Devnani, G., Sanjay, M., Siengchin, S., Maran, J. P., Al-Dhabi, N. A., Karuppiah, P., Mariadhas, V. A., & Sivarajasekar, N. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
  47. Rangappa, S. M., Parameswaranpillai, J., Siengchin, S., Jawaid, M., & Ozbakkaloglu, T. (2022). Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba Pentandra. Scientific reports, 12(1), 1-18. https://doi.org/10.1038/s41598-021-04386-2
  48. Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis lignoselulosa hasil pretreatment pelepah sawit (Elaeis guineensis Jacq) menggunakan H2SO4 pada produksi bioetanol. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 6(2), 76-82. https://doi.org/10.21776/ub.industria.2017.006.02.3
  49. Rusdianto, A. S., Septyatha, F., & Choiron, M. (2018). Analisis kelayakan finansial industri bio-pellet kulit kopi di Kabupaten Jember. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 7(2), 89-94. https://doi.org/10.21776/ub.industria.2018.007.02.3
  50. Sumanti, D. M., Hanidah, I.-I., & Abdullatif, M. A. (2022). Physical, Chemical, and Functional Characteristics of Composite Flours from Banana Corm and Tempeh. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 11(2), 139-150. https://doi.org/10.21776/ub.industria.2022.011.01.5
  51. Supri, A. G., Aizat, A. E., Yazid, M., & Masturina, M. (2015). Chicken feather fibers–recycled high-density polyethylene composites: The effect of ε-caprolactam. Journal of Thermoplastic Composite Materials, 28(3), 327-339. https://doi.org/10.1177/0892705713484746
  52. Susmiati, Y. (2018). The prospect of bioethanol production from agricultural waste and organic waste. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 7(2), 67-80. https://doi.org/21776/ub.industria.2018.007.02.1
  53. Taib, N.-A. A. B., Rahman, M. R., Bakri, M. K. B., Matin, M. M., & Sanaullah, K. (2022). Recycled industrial plastics’ fine waste incorporated into biocomposites. In Recycled Plastic Biocomposites (pp. 213-228). Elsevier. https://doi.org/10.1016/B978-0-323-88653-6.00012-2
  54. Tesfaye, T., Sithole, B., Ramjugernath, D., & Chunilall, V. (2017). Valorisation of chicken feathers: Characterisation of chemical properties. Waste management, 68, 626-635. https://doi.org/10.1016/j.wasman.2017.06.050
  55. Tuna, A., Okumuş, Y., Celebi, H., & Seyhan, A. T. (2015). Thermochemical conversion of poultry chicken feather fibers of different colors into microporous fibers. Journal of Analytical and Applied Pyrolysis, 115, 112-124. https://doi.org/10.1016/j.jaap.2015.07.008
  56. Wijana, S., Dewi, I. A., & Setyowati, E. D. P. (2016). Aplikasi pewarna batik pada tenun dari serat daun nanas (kajian proporsi jenis benang dan jenis pewarna). Industria: Jurnal Teknologi dan Manajemen Agroindustri, 5(1), 30-38. http://www.industria.ub.ac.id