Renewable Energy Resources and Technologies
Mohammad Hosseinpour; Hassan Ali Ozgoli; Seyed Alireza Haji Seyed Mirza Hosseini; Amir Hooman Hemmasi; Ramin Mehdipour
Abstract
In this study, the partial alteration of fuel consumption of combined cycle power plants was investigated and analyzed using an innovative model. This system is applicable using the fuel derived from the biomass gasification process. For this purpose, energy modeling of an advanced gasification system ...
Read More
In this study, the partial alteration of fuel consumption of combined cycle power plants was investigated and analyzed using an innovative model. This system is applicable using the fuel derived from the biomass gasification process. For this purpose, energy modeling of an advanced gasification system to supply a share of the gas fuel was fulfilled. The results demonstrated that by considering the reasonable capacities for the design, up to 10 % of natural gas fuel could be replaced with syngas. In addition, heat recovery of the plant stack in the Kalina low-temperature cycle enhanced the total efficiency by up to 1.7 %. Therefore, the competitive advantage of the proposed cycle was enhanced compared to conventional power generation systems. A parametric study of the components affecting the integrated cycle performance including alternative biomass fuels, moisture content of biomass fuel, steam-to-biomass ratio, and equivalence ratio of the gasifier was performed, and the permissible values of each factor were obtained. Thus, by utilizing the proposed approach, it is possible to gradually substitute the consumed fossil fuels of power plants with renewable resources to achieve the objectives of sustainable energy development.
Renewable Energy Resources and Technologies
Roxana Isabel Bernaola Flores; Carmen Elena Flores Barreda; Diana Carolina Parada Quinayá; Ursula Fabiola Rodríguez Zúñiga
Abstract
Reducing the demand for fossil fuels and the derived products can be achieved through the development of alternative energy sources. This work presents a countrywide study of the energy potential of lignocellulosic biomass sourced from agro-industrial by-products in the country of Peru. Ranking of the ...
Read More
Reducing the demand for fossil fuels and the derived products can be achieved through the development of alternative energy sources. This work presents a countrywide study of the energy potential of lignocellulosic biomass sourced from agro-industrial by-products in the country of Peru. Ranking of the crops that produce the most waste was followed by an energy potential evaluation of carbohydrate conversion and thermochemical conversion. The crops with high calorific values were sugar cane bagasse, wood waste, and coffee husk. The energy potential of the principal lignocellulosic by-products, in terms of tons of oil equivalents per year, resulted from rice straw at 1.45 M, followed by corn residue at 1.13 M and sugar cane residue at 1.10 M. The northern region of Peru generated the highest quantities of rice (straw and husk), banana (husk and rachis), and sugar cane (bagasse and straw) by-products and the southern regions generated the greatest quantities of quinoa residue, all of which could be used as raw materials for biofuels and aggregates for materials. These results indicate that theoretically, this readily available biomass could meet the country's energy demands while promoting sustainability and national energy security.
Renewable Energy Resources and Technologies
Sapna Kinattinkara; Thangavelu Arumugam; Nandhini Samiappan; Vivek Sivakumar; Sampathkumar Velusamy; Mohanraj Murugesan; Manoj Shanmugamoorthy
Abstract
Increased global energy consumption demands the use of more energy resources, aggravating environmental issues. This study focused on analyzing biogas production from a mixture of cow dung, water hyacinth, and food waste and checking the efficiency of the biogas. The efficiency of biogas production was ...
Read More
Increased global energy consumption demands the use of more energy resources, aggravating environmental issues. This study focused on analyzing biogas production from a mixture of cow dung, water hyacinth, and food waste and checking the efficiency of the biogas. The efficiency of biogas production was tested using two alternative settings in the study. The first setup employs Eichhornia crassipes that have been NaOH-treated and mixed with co-digestion substrates such as cow manure and food waste which have been stored at room temperature for 32 days. The second setup contains five different types of substrates such as L1-cow dung, L2- cow dung: water hyacinth, L3-cow dung: food waste, L4-cow dung: water hyacinth: food waste, and L5-water hyacinth. The properties of the Eichhornia crassipes were studied on several biogas substrates, such as pH, temperature, COD, TOC, and NPK tests, as well as total biogas output and methane percentage. The results of the comparison analysis show that the substrate L4 has a high level of NPK (4.7 %) and a higher amount of COD (137600 mg/l). These characteristics enhance the gas yield and methane percentage (85 %). Overall, the water hyacinth mixed with cow dung and food waste exceeded the other four substrates. The total yield of biogas from the first setup was 8.5 litres, the flammability was tested on the 28th day, and the blue flame was obtained. Water hyacinth was removed from aquatic areas and used as an alternative energy source, hence being environmentally friendly.
Renewable Energy Resources and Technologies
Toyese Oyegoke; Emo Obadiah; Francis Adah; John E Oguche; Geoffrey T Timothy; Ismail A. Mantu; Abubakar D Ado
Abstract
In recent times, limitations and adverse effects of fossil fuels have significantly attracted researchers' attention to green fuels worldwide, especially in developed nations. As a way of assessing this actualization of biorefineries establishment in developing nations, this report surveys the works ...
Read More
In recent times, limitations and adverse effects of fossil fuels have significantly attracted researchers' attention to green fuels worldwide, especially in developed nations. As a way of assessing this actualization of biorefineries establishment in developing nations, this report surveys the works done by various researches towards this great course in terms of promoting and gaining the attention of both government and private investors about the technical and economic feasibility of embracing the use of biofuels, a case of bioethanol in Nigeria. Different classes of feedstocks were reviewed for the laboratory-scale, process scale-up, pilot plant, and techno-economic studies regarding ascertaining the technical and economic feasibility of local setup of a functional biorefinery in Nigeria, which would be beneficial environmentally and economically. The literature survey unveiled that the Bioethanol yield obtained from sugarcane-juice (72.7 %), banana-stems (84.0 %), and cassava (92.0 %) were found to be of highest potential amongst other sugar-based, lignocellulosic, and starch-based feedstock, respectively. The survey further unveils that the volume of process scale-up and economic feasibility studies does not correlate well with the laboratory-scale studies. The bulk of the research works on bioethanol has given preferential attention to laboratory studies. Only a few studies have looked into the commercialization (i.e., scale-up) of the laboratory findings and the economic implications. Presently, only sugarcane and a few cassavas are reported in the literature so far. It is, therefore, necessary for further studies to give attention to the investigation of the commercializing locally developed technologies and the exploration of their economic benefits.
Renewable Energy Resources and Technologies
Shiva Shadpour; ALi Pirouzi; Mohsen Nosrati; Hoda Hamze
Abstract
Long mixing time, high power consumption, and small mass transfer coefficients are common problems in the photobioreactor design for microalgae culture which have a great effect on system efficiency and performance, CO2 stabilization, and biomass production. In this study, a special design of the triangular ...
Read More
Long mixing time, high power consumption, and small mass transfer coefficients are common problems in the photobioreactor design for microalgae culture which have a great effect on system efficiency and performance, CO2 stabilization, and biomass production. In this study, a special design of the triangular external loop airlift photobioreactor was studied. The bioreactor's geometry was such that the angle between hypotenuse and the horizontal side ( ) could vary. This configuration created an effective gas-liquid countercurrent flow in the downcomer section. In the present research, hydrodynamic and mass transfer of the reactor were investigated on the microalgae productivity under different design and operating parameters. The optimum conditions for the enhancement of Chlorella vulgaris productivity were explored by analyzing the mixing time ( ), volumetric power consumption (P/V), mass transfer coefficients ( ), bubble diameter (d), and gas holdup ( ) as responses. The results showed that the hypotenuse angle of = 59o and the superficial gas velocities of the = 0.0050 m.s-1 for the downcomer and = 0.008 m.s-1 for the riser of the reactor were the best conditions to achieve the highest biomass productivity. The responses’ values obtained in the optimum condition were as follows: = 19.67 (h-1), = 23.79 (h-1), = 23.76 (h-1), = 0.41, and = 62.83 , which had a smaller deviation than the actual values. The highest concentration of Chlorella vulgaris ( 1.4 g.l-1) achieved in this work was obtained in a shorter span of time (11th day of cultivation) based on the growth curve in optimized conditions.
Renewable Energy Resources and Technologies
Rasoul Aydram; Hossein Haji Agha Alizade; Majid Rasouli; Behdad Shadidi
Abstract
Reduced emissions of greenhouse gases and global warming can be made possible by discovering alternative energies and reduced dependence on fossil fuels. Biogas is considered as one of the alternatives to fossil fuels. This study investigates anaerobic co-digestion for the development of biogas with ...
Read More
Reduced emissions of greenhouse gases and global warming can be made possible by discovering alternative energies and reduced dependence on fossil fuels. Biogas is considered as one of the alternatives to fossil fuels. This study investigates anaerobic co-digestion for the development of biogas with sheep blood and cheese whey. Digested cow manure was used as inoculum. Using the Design Expert 10 program and within the context of mixture design, the experiments were designed. Then, 22 experimental digesters with a volume of 500 mL were considered for doing the experiments considering the design output provided by the software. Each one was filled with 300 mL of different compositions of three matters. The digesters were kept in the mesophilic temperature range (37 °C ) for 21 days. Biogas was measured using the BMP test on a daily basis. According to the experimental findings, the best composition included 35 % sheep blood, 35 % cheese whey, and 30 % inoculum. This biogas composition produced a biogas yield of 146.66 mL/g vs. The amount of methane production in this compound was 73.33 mL/g vs. After modeling, the Design Expert software predicted an optimal composition including 44 % sheep blood, 24 % cheese whey, and 32 % inoculum. Biogas yield of this prediction was 143 mL/g vs. The findings show that in order to overcome acidification in digestion of matters such as cheese whey, a composition of matters with higher pH stability can be used to increase the amount of biogas and methane produced in a particular period. Furthermore, using inoculum accelerates the digestion operations due to existence of many microorganisms and saves time and energy.
Renewable Energy Resources and Technologies
Farid Jafarihaghighi; Hasanali Bahrami; Mehdi Ardjmand; Mehrdad Mirzajanzadeh
Abstract
The present study uses three generations of biodiesels and studies their effects on physical properties and exhaust gases. They are comprised of Palmaria palmate oil (third generation), Eucheuma spinosum oil (third generation), Eucheuma cottonii oil (third generation), Common wormwood oil (second generation), ...
Read More
The present study uses three generations of biodiesels and studies their effects on physical properties and exhaust gases. They are comprised of Palmaria palmate oil (third generation), Eucheuma spinosum oil (third generation), Eucheuma cottonii oil (third generation), Common wormwood oil (second generation), Marjoram oil (second generation), Peganum harmala oil (second generation), Zingiber officinale oil (first generation), Anethum graveolens oil (first generation), and Cacao bean oil (first generation). Results show that first-generation oils gain a higher level of Calorific value around 41.16 MJ/kg than other generations. The longest carbon chain is observed by the first generation with higher unsaturated fatty acids than other generations (94.11 %). The first generation gains a higher level of density around 882 kg/m3 than other generations. Also, the first generation gains a higher level of flash point around 193 ˚C than other generations. The third generation gains a high level of cetane number at about 69, compared to other generations. The first generation gains a minimum level of cloud and pour point around -3 ˚C and -2 ˚C compared to other generations. Moreover, the third generation gains the lowest level of viscosity about 2.51 CSt compared to the first generation. The third generation gains the lowest level of NOx around 371 ppm compared to other generations. Finally, the third generation gains the lowest level of soot, CO, and HC around 0.47 Vol. %, 0.018 Vol. %, and 4.82 ppm, compared to other generations.
Renewable Energy Resources and Technologies
Abolfazl Taherzadeh Fini; Abolfazl Fattahi
Abstract
Energy crisis in the world motivates countries to hire new and renewable energies. One of the main and valuable renewable sources of energy is agricultural waste. This is widely disposed of through the world during the harvest, packing, and transportation. In many countries, agricultural waste is considerably ...
Read More
Energy crisis in the world motivates countries to hire new and renewable energies. One of the main and valuable renewable sources of energy is agricultural waste. This is widely disposed of through the world during the harvest, packing, and transportation. In many countries, agricultural waste is considerably weighty. Nonetheless, most of that is used for animal feed or herbal fertilizer and no useful value is added. Despite its location in an arid region, Iran produces various citrus, cereals, and vegetables in high tonnage. The waste of the agricultural product, especially those disposed of by the food processing industries, such as fruit juice factories, remains also useless. The potential of the residues to extract biofuel is investigated in the current experimental study. Six samples of abundant agricultural products in Iran are chosen: sugarcane, grape, potato, orange peel, date, and mulberry. The processes of pretreatment, hydrolysis, and fermentation are performed and the extracted juice is directed to the distiller to gather bioethanol. To evaluate the distilled juice purity, a gas chromatography test is carried out. It is shown that date and mulberry can produce a maximum of 29.5 and 23 ml (ethanol)/100 g (dry waste) as the most efficient agricultural products.
Renewable Energy Resources and Technologies
Mehdi Zare; Barat Ghobadian; Seyed Reza Hassan-Beygi; Gholamhasan Najafi
Abstract
In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces ...
Read More
In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researchers. The aim of this study is to investigate the evaporation characteristics based on droplet lifetime and critical surface temperature (the maximum heat transfer rate) of diesel and biodiesel fuel droplets on hot surfaces. In order to determine the effects of diesel fuel, canola oil biodiesel, and castor oil biodiesel, the droplets impinging on the hot surfaces of aluminum alloy (7075) and steel alloy (1.5920) and the evaporation lifetime of diesel and biodiesel fuels were measured. Statistical analysis (ANOVA and Duncan’s multiple-range test) was carried out using SAS software. The results showed the maximum critical surface temperature of 450 °C for the castor oil biodiesel on steel 1.5920 surface and the minimum one for diesel fuel (350 °C). In this case, both surfaces had the same droplet lifetimes of approximately 2 s. The results of ANOVA showed the significant effect of the surface material and fuel type on the evaporation lifetime of fuel droplet at 1 % probability.
Renewable Energy Resources and Technologies
Saeed Hosseinpour; Seyed Alireza Haji Seyed Mirza Hosseini; Ramin Mehdipour; Amir Hooman Hemmasi; Hassan Ali Ozgoli
Abstract
In this study, an advanced combined power generation cycle was evaluated to obtain sustainable energy with high power and efficiency. This combined cycle includes biomass gasification, the Cascaded Humidified Advanced Turbine (CHAT), and the steam turbine. The fuel consumed by the system is derived from ...
Read More
In this study, an advanced combined power generation cycle was evaluated to obtain sustainable energy with high power and efficiency. This combined cycle includes biomass gasification, the Cascaded Humidified Advanced Turbine (CHAT), and the steam turbine. The fuel consumed by the system is derived from the gas produced in the biomass gasification process. The biomass consumed in this study is wood because of its reasonable supply and availability. The economic analysis conducted in the present research has produced significant gains. The proposed cycle with current prices intended to sell electricity in Iran has a positive Net Present Value (NPV). Therefore, the presented cycle in terms of energy supply has good economic value. Due to the significantly higher purchase/sale price of electricity from renewable power plants in developed countries in Europe or the United States, the power generation cycle proposed in this study may be more economically feasible in other regions than Iran. Of course, with a slight price increase in electricity sales in Iran (3 US₵ kWh-1), the proposed system will have acceptable NPV. Because of the complicated equipment used in high-pressure and low-pressure turbines and compressors sets, the equipment used in this cycle requires a higher initial investment cost than conventional power generation systems. The results showed that the investment cost per unit of energy was approximately 909 USD kW-1.
Renewable Energy Resources and Technologies
Amir Goshadrou
Abstract
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA ...
Read More
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, the intact GGR was impregnated in 2 % (w/w) surfactant (Polyethylene glycol) aqueous solution prior to the PA pretreatment. Consequently, the pretreated materials were subjected to enzymatic hydrolysis (50 °C, 72 h) using 25 FPU/g cellulase, and the most digestible biomass was nominated for conversion to bioethanol. Substantial improvement in digestibility of GGR (~92 % hydrolysis yield) was observed following surfactant-assisted PA pretreatment, whereas digestibility yield from the untreated biomass was only 16.1 %. Consequently, the ethanol production form GGR was significantly enhanced by 19.7-fold through separate hydrolysis and fermentation of biomass. Different analytical approaches including water retention value, Simons’ staining, and crystallinity together with FESEM imaging revealed that the improved surface hydrophilicity, increased substrate accessibility to enzyme, and decreased crystallinity could be the major effects of PA pretreatment, leading to higher susceptibility of GGR to enzymatic hydrolysis and subsequent ethanol production.
Renewable Energy Resources and Technologies
Thenmozhia Pitchai; Rekha Babu; Saravanathamizhan Ramanujam; Iyappan Kuttalam
Abstract
Agricultural residues are potential renewable biomass sources for bio-energy production. The objective of the work is to determine the pyrolysis kinetic parameters of corn cob biomass. Three different heating rates of 10, 20, and 30 °C/min were taken into account in the thermogravimetric analysis. ...
Read More
Agricultural residues are potential renewable biomass sources for bio-energy production. The objective of the work is to determine the pyrolysis kinetic parameters of corn cob biomass. Three different heating rates of 10, 20, and 30 °C/min were taken into account in the thermogravimetric analysis. The Kissinger, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunose (KAS) model-free methods were employed to calculate the kinetic parameters by the use of the data obtained from TGA. The thermal decomposition process shows three basic phases of pyrolysis: removal of moisture content, primary and secondary pyrolysis. The experimental values were compared with the obtained values from FWO and KAS models; implying that the model values were in good agreement with experimental results. The values of kinetic parameters obtained from Kissinger, FWO, and KAS methods are very similar to their average values of 115, 136, and 131 kJmol-1, respectively. Gas Chromatograph-Mass Spectroscopy (GC-MS) analysis of pyrolysis products is obtained, showing that bio-char and bio-oil contain 10 and 15 different compounds, respectively.
Renewable Energy Resources and Technologies
Tazkieh Gilvari; Behzad Aghabarari; Mohammad Pazouki
Abstract
This study investigated the esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, and Oleic acid) and ethanol by ZnO, Al2O3-ZnOmixed oxide, and phosphotungestic acid (10 wt %) immobilized on the Al2O3-ZnOmixed oxide. The heterogeneous catalysts were characterized by XRD, ...
Read More
This study investigated the esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, and Oleic acid) and ethanol by ZnO, Al2O3-ZnOmixed oxide, and phosphotungestic acid (10 wt %) immobilized on the Al2O3-ZnOmixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM, and EDX techniques. Optimum yield was achieved by using 10 % HPW/Al2O3-ZnOas the best catalyst, and the effects of the amount of catalyst, molar ratio of acid to alcohol, reaction temperature, and time were investigated to ensure the ideal yield of esterification reaction of acetic acid and ethanol. The results showed that the esterification of acetic acid to its ethyl ester was carried out in 3.5 hours, with an alcohol-to-acid-molar ratio of 2 and a temperature of 80 ˚C with yield 98 %. Moreover, the 10 % HPW/Al2O3-ZnOcatalystshowed well activity in biodiesel production by the esterification of palmitic and oleic acids and the reaction yield did not decrease with an increase in alkyl chain lengthin acid molecules, remarkably.
Renewable Energy Resources and Technologies
Bahman Heydari; Shahin Rafiee; Elham Abdollahzadeh Sharghi; Seyed Saeid Mohtasebi
Abstract
The aromatic and dark-colored spearmint essential oil wastewater (SEOW) generally contains a large amount of organic matter, including chemical oxygen demand (COD), phenolic compounds, and inorganic contents. In this study, the pollutant removal performance and biogas production rate of an up-flow anaerobic ...
Read More
The aromatic and dark-colored spearmint essential oil wastewater (SEOW) generally contains a large amount of organic matter, including chemical oxygen demand (COD), phenolic compounds, and inorganic contents. In this study, the pollutant removal performance and biogas production rate of an up-flow anaerobic sludge blanket (UASB) reactor used for the treatment of SEOW were investigated. During the 102 days UASB operation at hydraulic retention time of 60 hours, the organic loading rate (OLR) was increased from 0.14 to 2.69 kg COD/m3.d by increasing the influent SEOW concentration. With increasing OLR from 0.14 to 2.69 kg COD/m3.d, the concentrations of COD and phenol in the influent of the UASB reactor increased to 6720±383 mg/L and 383±88 mg/L, respectively. At OLR equal to 2.69 kg COD/m3.d, the steady-state average removal efficiencies of COD and phenol were 72.0±1.4 and 63.1±6.7 %, respectively. The stability of the anaerobic system was confirmed by the average steady-state ratios of the volatile fatty acid/alkalinity and pH in the UASB reactor, which were less than 0.4 and 7.5±0.1, respectively, at different OLRs. The optimum OLR was found to be 2.69 kg COD/m3.d, where 26.9±1.7 L/d production of biogas containing 63.0±5.2 % and 22.4±4.2 % methane and carbon dioxide, respectively, was obtained. Moreover, at OLR equal to 2.69 kg COD/m3.d, the biogas yield and net heating value were 462.2±46.9 L/kg CODremoved and 24.7±5.2 MJ/m3, respectively. The results of the current study reveal the substantial potential of the UASB reactor in terms of pollutant removal performance and biogas production for the treatment of SEOW.