TY - JOUR ID - 70086 TI - Development of a Pilot Plant Solar Liquid Desiccant Air Conditioner for the Northern Region of Iran JO - Journal of Renewable Energy and Environment JA - JREE LA - en SN - 2423-5547 AU - Alizadeh, Shahab AU - Haghgou, Hamid Reza AD - Department of Energy , Materials & Energy Research Center (MERC), Karaj, Iran Y1 - 2016 PY - 2016 VL - 3 IS - 2 SP - 63 EP - 70 KW - Liquid desiccant KW - Dehumidification KW - Packed-bed KW - Solar regeneration DO - 10.30501/jree.2016.70086 N2 - In a 10-ton capacity pilot plant solar liquid desiccant air conditioner (LDAC) developed, dehumidification of the outside air is achieved through a honeycomb packed-bed heat and mass exchanger, using lithium chloride solution as the desiccant. The dry air obtained from the dehumidification process is evaporative cooled inside a cooling pad and directed into the conditioned space. The dilute solution thus produced is concentrated in a honeycomb packed-bed scavenger air regenerator using hot water from flat plate solar collectors. Carryover of the desiccant particles has been avoided by using eliminators. The air conditioner was installed on a 250 m2 area of the fluid mechanics laboratory of Babol University of Technology, a hot and humid location in the north on the Caspian Sea. The experimental data obtained were compared with the predicted results of a model developed for the air conditioner based on HYSIS and CARRIER energy soft-wares. The comparison reveals that good agreement exists between the experiments and the model predictions. The above tests further reveal that the unit has a satisfactory performance in independently controlling the air temperature and humidity of the conditioned space. The inaccuracies are well within the measuring errors of the temperature, humidity and the air and solution flow rates. An efficient heat recovery within the air conditioner resulted in a thermal COP of about 1.5 and an electrical COP of 7. A commercialization study reveals that the operating cost of an LDAC is significantly lower than its conventional counterpart. The costs would further reduce if a storage system was used to store the concentrated solution of liquid desiccant. A simple payback of five years was determined for the solar components of the liquid desiccant system in this study. UR - https://www.jree.ir/article_70086.html L1 - https://www.jree.ir/article_70086_3a2510c3130b3f83d5b77511ed432a7f.pdf ER -