Document Type : Research Article

Authors

Department of Energy Storage, Institute of Mechanics, Shiraz, Iran.

Abstract

A mechanical technique was applied to the copper current collector of lithium-ion battery anode to improve interface adhesion between Cu foil and anode film. The mechanical and electrochemical performances of graphite anodes coated on Bare Cu Foil (BCF) and Modified Cu Foil (MCF) were evaluated. The BCF and MCF anodes exhibited adhesion strengths of 1.552 and 1.617 MPa, respectively. The electrochemical studies of BCF and MCF anodes showed that the initial discharge capacity of graphite anode coated on the MCF (323.6 mAh g-1) was about 8 % higher than the BCF anode (299.9 mAh g-1). The BCF anode capacity reached 227.9 mAh g-1 after 100 charge/discharge cycles at 0.5C rate, while this value was 247.7 mAh g-1 for MCF anode. The results of electrochemical impedance spectra demonstrated that the diffusion coefficient of lithium-ion for MCF anode was about 56 % higher than that for BCF anode. On the other hand, the surface modification of the copper current collector reduced the charge transfer resistance of anode from 28.5 Ω to 23.2 Ω.

Keywords

Main Subjects

  1. Moghim, M.H., Eqra, R., Babaiee, M., Zarei-Jelyani, M. and Loghavi, M. M., "Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery", Journal of Electroanalytical Chemistry, Vol. 789, (2017), 67-75. (https://doi.org/10.1016/j.jelechem.2017.02.031).
  2. Zarei-Jelyani, M., Rashid-Nadimi, S. and Asghari, S., "Treated carbon felt as electrode material in vanadium redox flow batteries: A study of the use of carbon nanotubes as electrocatalyst", Journal os Solid State Electrochemistry, Vol. 21, (2017), 69-79. (https://doi.org/10.1007/s10008-016-3336-y).
  3. Loghavi, M.M., Eqra, R. and Mohammadi-Manesh, H., "Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0. 05O2 composite for the cathode of lithium-ion battery", Journal of Electroanalytical Chemistry, Vol. 862, (2020), 113971. (https://doi.org/10.1016/j.jelechem.2020.113971).
  4. Gholami, M., Zarei-jelyani, M., Babaiee, M., Baktashian, Sh. and Eqra, R., "Physical vapor deposition of TiO2 nanoparticles on artificial graphite: An excellent anode for high rate and long cycle life lithium-ion batteries", Ionics, Vol. 26, (2020), 4391-4399. (https://doi.org/10.1007/s11581-020-03579-5).
  5. Zarei-Jelyani, M., Baktashian, Sh., Babaiee, M. and Eqra, R., "Improved mechanical and electrochemical properties of artificial graphite anode using water-based binders in lithium-ion batteries", Journal of Renewable Energy and Environment (JREE), Vol. 5, (2018), 34-39. (http://dx.doi.org/10.30501/jree.2018.93555).
  6. 6. Zarei-Jelyani, M., Sarshar, M., Babaiee, M. and Tashakor, N., "Development of lifetime prediction model of lithium-ion battery based on minimizing prediction errors of cycling and operational time degradation using genetic algorithm", Journal of Renewable Energy and Environment (JREE), Vol. 5, (2018), 60-63. (http://dx.doi.org/10.30501/jree.2018.93531).
  7. Sarshar, M., Zarei-Jelyani, M. and Babaiee, M., "Application of semi empirical and multiphysics models in simulating lithium ion battery operation", Proceedings of the 10th International Chemical Engineering Congress and Exhibition, Isfahan, Iran, (2018). (https://www.researchgate.net/publication/325010205_Application_of_semi_empirical_and_Multiphysics_models_in_simulating_lithium_ion_battery_operation), (Accessed: 29 November 2021).
  8. Chen, J., Xu, Y., Cao, M., Zhu, C., Liu, X., Li, Y. and Zhong, S., "A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries", Journal of Power Sources, Vol. 426, (2019), 169-177. (https://doi.org/10.1016/j.jpowsour.2019.04.027).
  9. Yan, K., Lee, H.W., Gao, T., Zheng, G., Yao, H., Wang, H. and Cui, Y., "Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode", Nano Letters, Vol. 14, (2014), 6016-6022. (https://doi.org/10.1021/nl503125u).
  10. Zhang, J., Liu, Z., Kong, Q., Zhang, C., Pang, S., Yue, L. and Cui, G., "Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator", ACS Applied Materials & Interfaces, Vol. 5, (2013), 128-134. (https://doi.org/10.1021/am302290n).
  11. Chen, J., Zhang, Q., Zeng, M., Ding, N., Li, Z., Zhong, S. and Yang, G., "Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries", Journal of Solid State Electrochemistry, Vol. 20, (2016), 1285-1294. (https://doi.org/10.1007/s10008-016-3126-6).
  12. Zhang, L., Liu, Z., Cui, G. and Chen, L., "Biomass-derived materials for electrochemical energy storages", Progress in Polymer Science, Vol. 43, (2015), 136-164. (https://doi.org/10.1016/j.progpolymsci.2014.09.003).
  13. Zhu, C., Chen, J., Liu, S., Cheng, B., Xu, Y., Zhang, P. and Zhong, S., "Improved electrochemical performance of bagasse and starch-modified LiNi0.5Mn0.3Co0.2O2 materials for lithium-ion batteries", Journal of Materials Science, Vol. 53, (2018), 5242-5254. (https://doi.org/10.1007/s10853-017-1926-4).
  14. Li, Y., Chen, X., Dolocan, A., Cui, Z., Xin, S., Xue, L. and Goodenough, J.B., "Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries", Journal of the American Chemical Society, Vol. 140, (2018), 6448-6455. (https://doi.org/10.1021/jacs.8b03106).
  15. Huang, B., Xu, B., Li, Y., Zhou, W., You, Y., Zhong, S. and Goodenough, J.B., "Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3", ACS Applied Materials & Interfaces, Vol. 8, (2016), 14552-14557. (https://doi.org/10.1021/acsami.6b03070).
  16. Ji, J., Liu, J., Lai, L., Zhao, X., Zhen, Y., Lin, J. and Ruoff, R.S., "In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode", ACS Nano, Vol. 9, (2015), 8609-8616. (https://doi.org/10.1021/acsnano.5b03888).
  17. Li, J., Zhang, Q., Xiao, X., Cheng, Y.T., Liang, C. and Dudney, N.J., "Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries", Journal of the American Chemical Society, Vol. 137, (2015), 13732-13735. (https://doi.org/10.1021/jacs.5b06178).
  18. Zuo, T.T., Wu, X.W., Yang, C.P., Yin, Y.X., Ye, H., Li, N.W. and Guo, Y.G., "Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes", Advanced Materials, Vol. 29, (2017), 1700389. (https://doi.org/10.1002/adma.201700389).
  19. Shin, D.Y., Park, D.H. and Ahn, H.J., "Interface modification of an Al current collector for ultrafast lithium-ion batteries", Applied Surface Science, Vol. 475, (2019), 519-523. (https://doi.org/10.1016/j.apsusc.2019.01.016).
  20. Lu, L.L., Ge, J., Yang, J.N., Chen, S.M., Yao, H.B., Zhou, F. and Yu, S.H., "Free-standing copper nanowire network current collector for improving lithium anode performance", Nano Letters, Vol. 16, (2016), 4431-4437. (https://doi.org/10.1021/acs.nanolett.6b01581).
  21. Park, H., Um, J.H., Choi, H., Yoon, W.S., Sung, Y.E. and Choe, H., "Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries", Applied Surface Science, Vol. 399, (2017), 132-138. (https://doi.org/10.1016/j.apsusc.2016.12.043).
  22. Zhang, P., Ma, Z., Wang, Y., Zou, Y., Sun, L. and Lu, C., "Lithiation-induced interfacial failure of electrode-collector: A first-principles study", Materials Chemistry and Physics, Vol. 222, (2019), 193-199. (https://doi.org/10.1016/j.matchemphys.2018.10.018).
  23. Shu, J., Shui, M., Huang, F., Xu, D., Ren, Y., Hou, L. and Xu, J., "Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries", Electrochimica Acta, Vol. 56, (2011), 3006-3014. (https://doi.org/10.1016/j.electacta.2011.01.004).
  24. Nara, H., Mukoyama, D., Shimizu, R., Momma, T. and Osaka, T., "Systematic analysis of interfacial resistance between the cathode layer and the current collector in lithium-ion batteries by electrochemical impedance spectroscopy", Journal of Power Sources, Vol. 409, (2019), 139-147. (https://doi.org/10.1016/j.jpowsour.2018.09.014).
  25. Wu, J., Zhu, Z., Zhang, H., Fu, H., Li, H., Wang, A. and Hu, Z., "Improved electrochemical performance of the silicon/graphite-tin composite anode material by modifying the surface morphology of the Cu current collector", Electrochimica Acta, Vol. 146, (2014), 322-327. (https://doi.org/10.1016/j.electacta.2014.09.075).
  26. Kang, S., Xie, H., Zhai, W., Ma, Z.F., Wang, R. and Zhang, W., "Enhancing performance of a lithium ion battery by optimizing the surface properties of the current collector", International Journal of Electrochemical Science, Vol. 10, (2015), 2324-2335. (http://www.electrochemsci.org/papers/vol10/100302324.pdf), (Accessed: 29 November 2021).
  27. Jeon, H., Cho, I., Jo, H., Kim, K., Ryou, M.H. and Lee, Y.M., "Highly rough copper current collector: improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries", RSC Advances, Vol. 7, (2017), 35681-35686. (https://doi.org/10.1039/C7RA04598K).
  28. Jiang, J., Nie, P., Ding, B., Wu, W., Chang, Z., Wu, Y. and Zhang, X., "Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries", ACS Applied Materials & Interfaces, Vol. 8, (2016), 30926-30932. (https://doi.org/10.1021/acsami.6b10038).
  29. Zhang, N., Zheng, Y., Trifonova, A. and Pfleging, W., "Laser structured Cu foil for high-performance lithium-ion battery anodes", Journal of Applied Electrochemistry, Vol. 47, (2017), 829-837. (https://doi.org/10.1007/s10800-017-1086-x).
  30. Yoon, T., Chapman, N., Nguyen, C.C. and Lucht, B.L., "Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes", Journal of Materials Science, Vol. 52, (2017), 3613-3621. (https://doi.org/10.1007/s10853-016-0442-2).
  31. Mao, C., Wood, M., David, L., An, S.J., Sheng, Y., Du, Z., Meyer III, H.M., Ruther, R.E. and Wood III, D.L., "Selecting the best graphite for long-life, high-energy Li-ion batteries", Journal of The Electrochemical Society, Vol. 165, No. 9, (2018), A1837-A1845. (https://iopscience.iop.org/article/10.1149/2.1111809jes/pdf), (Accessed: 29 November 2021).
  32. Steinhauer, M., Risse, S., Wagner, N. and Friedrich, K.A., "Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy", Electrochimica Acta, Vol. 228, (2017), 652-658. (https://doi.org/10.1016/j.electacta.2017.01.128).
  33. Zarei-Jelyani, M., Babaiee, M., Baktashian, Sh. and Eqra, R., "Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: Understanding the formation of the solid electrolyte interphase", Journal of Solid State Electrochemistry, Vol. 23, (2019), 2771-2783. (https://doi.org/10.1007/s10008-019-04381-8).