Document Type : Research Article

Authors

Department of Electrical Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, P. O. Box: 81551-39998, Isfahan, Isfahan, Iran.

Abstract

A new interleaved high step-up converter with Zero Voltage Transition (ZVT) is proposed for operation in this paper. The main advantages of the proposed converter are low input current ripple and low voltage stress on the power switches, high efficiency, low total component count, and eliminating reverse recovery problem of power diodes. Due to the soft switching operation of the switches and diodes in the converter, the efficiency has been enhanced. Also, the switches do not have capacitive turn on loss due to ZVT operation. The proposed converter uses only one power switch to provide ZVT conditions for all switches and the clamp capacitor transfers its energy to the lifting capacitor, which causes increase in voltage gain of the converter. Because of the interleaved structure, the converter has a low input ripple current and this advantage makes it very suitable for solar applications. The proposed converter is analysed and a 580W prototype is made to verify theoretical analyses.
 
 

Keywords

Main Subjects

  1. Li, W. and He, X., "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications", IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, (2011), 1239-1250. (https://doi.org/10.1109/TIE.2010.2049715).
  2. Fallahzadeh, S., Abjadi, N., Kargar, A. and Blaabjerg, F., "Applying sliding-mode control to a double-stage single-phase grid-connected PV system", Journal of Renewable Energy and Environment (JREE), Vol. 8, No. 1, (2011), 1-12. (https://doi.org/10.30501/jree.2020.233358.1114).
  3. Hassani, M.Y., Maalandish, M. and Hosseini, S.H., "A new single-input multioutput interleaved high step-up DC–DC converter for sustainable energy applications", IEEE Transactions on Power Electronics, Vol. 36, No. 2, (2021), 1544-1552. (https://doi.org/10.1109/TPEL.2020.3011218).
  4. Nouri, T., Shaneh, M. and Ghorbani, A., "Interleaved high step-up ZVS DC–DC converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, Vol. 13, No. 16, (2020), 3537-3548. (https://doi.org/10.1049/iet-pel.2020.0162).
  5. Li, W., Lv, X., Deng, Y., Liu, J. and He, X., "A review of non-isolated high step-up DC/DC converters in renewable energy applications", Proceedings of Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, (2009), 364-369. (https://doi.org/10.1109/APEC.2009.4802683).
  6. Esmaeli, A., "An intelligent PV panel structure to extract the maximum power in mismatch irradiance", Journal of Renewable Energy and Environment (JREE), Vol. 2, No. 1, (2015), 25-31. (https://doi.org/10.30501/jree.2015.70061).
  7. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F. and Lehman, B., "Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Transactions on Power Electronics, Vol. 32, No. 12, (2017), 9143-9178. (https://doi.org/10.1109/TPEL.2017.2652318).
  8. Tofoli, F.L., Pereira, D.D.C. and Paula, W.J., "Survey on non-isolated high-voltage step-up DC–DC topologies based on the boost converter", IET Power Electronics, Vol. 8, No. 10, (2015), 2044-2057. (https://doi.org/10.1049/iet-pel.2014.0605).
  9. Kim, P., Lee, S., Park, J. and Choi, S., "High step-up interleaved boost converters using voltage multiplier cells", Proceedins of 8th International Conference on Power Electronics - ECCE Asia, Jeju, South Korea, (2011), 2844-2851. (https://doi.org/10.1109/ICPE.2011.5944782).
  10. Schirone, L. and Macellari, M., "Design of high-efficiency non-insulated step-up converters", IET Power Electronics, Vol. 8, No. 5, (2015), 743-749. (https://doi.org/10.1049/iet-pel.2014.0554).
  11. Loera-Palomo, R. and Morales-Saldaña, J.A., "Family of quadratic step-up DC–DC converters based on non-cascading structures", IET Power Electronics, Vol. 8, No. 5, (2015), 793-801. (https://doi.org/10.1049/iet-pel.2013.0879).
  12. Zheng, Y., Xie, W. and Smedley, K.M., "Interleaved high step-up converter with coupled inductors", IEEE Transactions on Power Electronics, Vol. 34, No. 7, (2019), 6478-6488. (https://doi.org/10.1109/TPEL.2018.2874189).
  13. Yu, W., Hutchens C., Lai, J.S., Zhang, J., Lisi, G., Jabbari, A.D, Smith, D. and Hegardy, T., "High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications", Proceedings of IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, (2009), 3895-3900. (https://doi.org/10.1109/ECCE.2009.5316154)
  14. Zhu, X., Zhang, B. and Jin, K., "Hybrid nonisolated active quasi-switched DC-DC converter for high step-up voltage conversion applications", IEEE Access, Vol. 8, (2020), 222584-222598. (https://doi.org/10.1109/ACCESS.2020.3043816).
  15. Seo, S.-W., Ryu, J.-H., Kim, Y. and Choi, H.H., "Non-isolated high step-up DC/DC converter with coupled inductor and switched capacitor", IEEE Access, Vol. 8, (2020), 217108-217122, (https://doi.org/10.1109/ACCESS.2020.3041738).
  16. Li, W., Fan, L., Zhao, Y., He, X., Xu, D. and Wu, B., "High-step-up and high-efficiency fuel-cell power-generation system with active-clamp flyback–forward converter", IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, (2012), 599-610. (https://doi.org/10.1109/TIE.2011.2130499).
  17. Forouzesh, M., Shen, Y., Yari, K., Siwakoti, Y.P. and Blaabjerg, F., "High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems", IEEE Transactions on Power Electronics, Vol. 33, No. 7, (2018), 5967-5982. (https://doi.org/10.1109/TPEL.2017.2746750).
  18. Li, W.; Li, W. and He, X., "Zero-voltage transition interleaved high step-up converter with built-in transformer", IET Power Electronics, Vol. 4, No. 5, (2011), 523-531. (https://doi.org/10.1049/iet-pel.2010.0133).
  19. Nouri, T., Hosseini, S.H., Babaei, E. and Ebrahimi, J., "Interleaved high step-up DC–DC converter based on three-winding high-frequency coupled inductor and voltage multiplier cell", IET Power Electronics, Vol. 8, No. 2, (2015), 175-189. (https://doi.org/10.1049/iet-pel.2014.0165).
  20. Li, W., Xiang, X., Li, C., Li, W. and He, X., "Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system", IEEE Transactions on Power Electronics, Vol. 28, No. 1, (2013), 300-313. (https://doi.org/10.1109/TPEL.2012.2199771).
  21. Dwari, S. and Parsa, L., "An efficient high-step-up interleaved DC–DC converter with a common active clamp", IEEE Transactions on Power Electronics, Vol. 26, No. 1, (2011), 66-78. (https://doi.org/10.1109/TPEL.2010.2051816).
  22. Delshad, M., Madiseh, N.A., Amini, M.R., and Yazdani, M.R., "Implementation of soft-switching bidirectional flyback converter without auxiliary switch", IET Power Electronics, Vol. 6, No. 9, (2013), 1884-1891. (https://doi.org/10.1049/iet-pel.2012.0472).
  23. Shamsi, T., Delshad, M. and Adib, E., "A new simple-structure passive lossless snubber for DC-DC boost converters", IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, (2021), 2207-2214. (https://doi.org/10.1109/TIE.2020.2973906).
  24. Gerami, E., Delshad, M., Amini, M.R. and Yazdani, M.R., "A new family of non-isolated PWM DC-DC converter with soft switching", IET Power Electronics, Vol. 12, No. 2, (2019), 237-244. (https://doi.org/10.1049/iet-pel.2018.5351).
  25. Li, W., Xiang, X., Li, C., Li, W. and He, X., "Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system", IEEE Transactions on Power Electronics, Vol. 28, No. 1, (2013), 300-313. (https://doi.org/10.1109/TPEL.2012.2199771).
  26. Li, W. and He, X., "ZVT interleaved boost converters for high-efficiency, high step-up DC-DC conversion", IET Electric Power Applications, Vol. 1, No. 2, (2007), 284-290. (https://digital-library.theiet.org/content/journals/10.1049/iet-epa_20060239).
  27. Akhlaghi, B., Molavi, N., Fekri, M. and Farzanehfard, H., "High step-up interleaved ZVT converter with low voltage stress and automatic current sharing", IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, (2018), 291-299. (https://doi.org/10.1109/TIE.2017.2723861).
  28. Packnezhad, M., Farzanehfard, H. and Adib, E., "Integrated soft switching cell and clamp circuit for interleaved high-step-up converters," IET Power Electronics, Vol. 12, No. 3, (2019), 430-437. (https://doi.org/10.1049/iet-pel.2018.5446).
  29. Alghaythi, M.L., O’Connell, R.M., Islam, N.E., Khan, M.M.S. and Guerrero J.M., "A high step-up interleaved DC-DC converter with voltage multiplier and coupled inductors for renewable energy systems", IEEE Access, Vol. 8, (2020), 123165-123174. (https://doi.org/10.1109/ACCESS.2020.3007137).
  30. Andrade, A.M.S., Schuch, S.L. and da Silva Martins, M. L., "Analysis and design of high-efficiency hybrid high step-up DC–DC converter for distributed PV generation systems", IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, (2019), 3860-3868. (https://doi.org/10.1109/TIE.2018.2840496).
  31. Zheng, Y., Brown, B., Xie, W. and Li, S., "High step-up DC–DC converter with zero voltage switching and low input current ripple", IEEE Transactions on Power Electronics, Vol. 35, No. 9, (2020), 9416-9429.(https://doi.org/10.1109/TPEL.2020.2968613).