Document Type : Research Note

Authors

Department of Chemical Engineering, University of Engineering and Technology, Jr. Medrano Silva 165, Barranco, Lima, Peru.

Abstract

Reducing the demand for fossil fuels and the derived products can be achieved through the development of alternative energy sources. This work presents a countrywide study of the energy potential of lignocellulosic biomass sourced from agro-industrial by-products in the country of Peru. Ranking of the crops that produce the most waste was followed by an energy potential evaluation of carbohydrate conversion and thermochemical conversion. The crops with high calorific values were sugar cane bagasse, wood waste, and coffee husk. The energy potential of the principal lignocellulosic by-products, in terms of tons of oil equivalents per year, resulted from rice straw at 1.45 M, followed by corn residue at 1.13 M and sugar cane residue at 1.10 M. The northern region of Peru generated the highest quantities of rice (straw and husk), banana (husk and rachis), and sugar cane (bagasse and straw) by-products and the southern regions generated the greatest quantities of quinoa residue, all of which could be used as raw materials for biofuels and aggregates for materials. These results indicate that theoretically, this readily available biomass could meet the country's energy demands while promoting sustainability and national energy security.

Keywords

Main Subjects

  1. WWF, The energy report: 100 % renewable energy by 2050, (2011). (http://awsassets.panda.org/downloads/informe_energia_renovable_2010_esp_final_opt.pdf).
  2. Amiandamhen, S.O., Kumar, A., Adamopoulos, S., Jones, D. and Nilsson, B., "Bioenergy production and utilization in different sectors in Sweden: A state of the art review", BioResources, Vol. 15, No. 4, (2020), 9834-9857. (http://doi.org/10.15376/biores.15.4.Amiandamhen).
  3. Dahman, Y., Dignan, C., Fiayaz, A. and Chaudhry, A.L., "An introduction to biofuels, foods, livestock, and the environment", Biomass, biopolymer-based materials, and bioenergy, Woodhead Publishing, (2019), 241-276. (https://doi.org/10.1016/B978-0-08-102426-3.00013-8)
  4. Amezcua-Allieri, M.A. and Aburto, J., "Conversion of lignin to heat and power, chemicals or fuels into the transition energy strategy", Lignin-Trends and Applications, IntechOpen, (2018), 145-161. (https://www.intechopen.com/chapters/57294).
  5. Rebouillat, S. and Pla, F., "A review: on smart materials based on some polysaccharides; within the contextual bigger data, insiders, “improvisation” and said artificial intelligence trends", Journal of Biomaterials and Nanobiotechnology, Vol. 10, No. 2, (2019), 41-77. (https://doi.org/10.4236/jbnb.2019.102004).
  6. Iqbal, H., Kyazze, G. and Keshavarz, T., "Advances in the valorization of lignocellulosic materials by biotechnology: An overview", BioResources, Vol. 8, No. 2, (2013), 3157-3176. (https://doi.org/10.15376/biores.8.2.3157-3176).
  7. FAO, Bioenergía y seguridad alimentaria, BEFS, Vol. II, (2010). (http://www.fao.org/3/i1708s/i1708s00.htm), (Accessed: 5 September 2020).
  8. Lauri, P., Kallio, A. and Schneider, U., "Price of CO2 emissions and use of wood in Europe", Forest Policy and Economics, Vol. 15, (2012), 123-131. (https://doi.org/10.1016/j.forpol.2011.10.003).
  9. Menardo, S., Bauer, A., Theuretzbacher, F., Piringer, G., Nilsen, P.J., Balsari, P. and Amon, T., "Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses", BioEnergy Research, Vol. 6, (2013), 620-630. (https://doi.org/10.1007/s12155-012-9280-5).
  10. Ferreira, L., Otto, R., Silva, F., De Souza, S., De Souza, S. and Junior, O., "Review of the energy potential of the residual biomass for the distributed generation in Brazil", Renewable and Sustainable Energy Reviews, Vol. 94, (2018), 440-455. (http://dx.doi.org/10.1016/j.rser.2018.06.034).
  11. MINAGRI-DGPA-DEEIA, "Estudio del cacao en el Perú y en el mundo: un análisis de la producción y el comercio", (2016). (https://camcafeperu.com.pe/admin/recursos/publicaciones/Estudio-cacao-Peru-y-Mundo.pdf), (Accessed: 5 November 2019).
  12. MINAGRI, "El Perú: Centro de origen de la biodiversidad del cacao", (2017). (http://www.cocoaconnect.org/publication/cocoa-fact-sheet), (Accessed: 25 November 2021).
  13. MINAGRI, "Anuario estadístico de producción agrícola", (2018). (https://siea.midagri.gob.pe/portal/phocadownload/datos_y_estadisticas/anuarios/agricola/agricola_2018.pdf), (Accessed: 2 July 2021).
  14. MINAGRI, "Minagri presenta nueva quinua con alto contenido en proteínas y calidad de grano", (2020). (https://www.gob.pe/institucion/midagri/noticias/313516-minagri-presenta-nueva-quinua-con-alto-contenido-en-proteinas-y-calidad-de-grano), (Accessed: 20 November 2020).
  15. MEM, "Nueva matriz energética sostenible para el Perú", (2012). (http://www.minem.gob.pe/minem/archivos/file/DGEE/eficiencia%20energetica/publicaciones/guias/Informe_completo_Estudio_NUMES.pdf), (Accessed: 1 September 2020).
  16. MEM, "Balance Nacional de Energía", (2017). (https://www.minem.gob.pe/minem/archivos/file/DGEE/eficiencia%20energetica/publicaciones/BNE%202017.pdf), (Accessed: 30 May 2020).
  17. MEM, "Balance Nacional de Energía", (2018). (https://cdn.www.gob.pe/uploads/document/file/98790/BNE_2018.pdf), (Accessed: 18 December 2020).
  18. Vogel, K.P., Dien, B.S., Jung, H.G., Casler, M.D., Masterson, S.D. and Mitchell, R.B., "Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses", BioEnergy Research, Vol. 4, (2011), 96-110. (https://10.1007/s12155-010-9104-4).
  19. Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K., "Prediction of heating values of biomass fuel from elemental composition", Analytica Chimica Acta, Vol. 544, (2005), 191-198. (https://doi.org/10.1016/j.aca.2005.01.041).
  20. Saghir, M., Zafar, S., Tahir, A., Ouadi, M., Siddique, B. and Hornung, A., "Unlocking the potential of biomass energy in Pakistan", Frontiers in Energy Research, Vol. 7, (2019), 1-18. (https://doi.org/10.3389/fenrg.2019.00024).
  21. Balat, M., "Security of energy supply in Turkey: Challenges and solutions", Energy Conversion and Management, Vol. 51, No. 10, (2010), 1998-2011. (https://doi.org/10.1016/j.enconman.2010.02.033).
  22. Liu, T., McConkey, B., Huffman, T., Smith, S., MacGregor, B., Yemshanov, D. and Kulshreshtha, S., "Potential and impacts of renewable energy production from agricultural biomass in Canada", Applied Energy, Vol. 130, (2014), 222-229. (https://doi.org/10.1016/j.apenergy.2014.05.044).
  23. Giacchetta, G., Leporini, M. and Marchetti B., "Technical and economic analysis of different cogeneration systems for energy production from biomass", International Journal of Productivity and Quality Management, Vol. 13, No. 3, (2014), 289-309. (https://doi.org/10.1504/IJPQM.2014.060419).
  24. PROMPERÚ, "Desenvolvimiento del comercio exterior agroexportador en el Perú", (2018). (https://www.siicex.gob.pe/siicex/resources/sectoresproductivos/Desenvolvimiento%20agroexportador%202018.pdf), (Accessed: 18 June 2020).
  25. Anaya, R., "Situación actual de la exportación de espárragos (Asparagus officinalis) en el Perú", Universidad Nacional Agraria La Molina Lima, Perú, (2017). (http://repositorio.lamolina.edu.pe/handle/20.500.12996/2975), (Accessed: 15 July 2019).
  26. Medina, D.A., Nuñez, M.F.A. and Ordoñes, M.S., "Obtención de enzimas celulasas por fermentación sólida de hongos para ser utilizadas en el proceso de obtención de bioalcohol de residuos del cultivo de banano", Revista Tecnológica-ESPOL, Vol. 23, (2010). (https://doi.org/10.37815/rte).
  27. León-Martínez, T.S., Dopíco-Ramírez, D., Triana-Hernández, O. and Medina-Estevez, M., "Paja de la caña de azúcar, Sus usos en la actualidad", ICIDCA, Sobre los Derivados de la Caña de Azúcar, Vol. 47, (2013), 13-22. (https://www.redalyc.org/articulo.oa?id=223128548003).
  28. Ricce, C., Leyva, M., Medina, I., Miranda, J., Saldarriaga, L.F., Rodriguez J. and Jara R.S., "Uso de residuos agroindustriales de La Libertad en la elaboración de un pan integral", Agroindustrial Science, Vol. 3, (2013), 41-46.
  29. Pinzón Colmenares, I.E., "Estimación de la huella de carbono en los cultivos de quinua (Chenopodium quinoa) de los cantones Cayambe y Riobamba ubicados en los Andes Ecuatorianos", Salesian Politecnic University, Quito, Equador, (2017). (https://dspace.ups.edu.ec/handle/123456789/14110), (Accessed: 10 November 2020)
  30. REN21, "Renewables 2018 global status report (Paris: REN21 Secretariat)", (2018). (https://www.ren21.net/wp-content/uploads/2019/05/GSR2018_Full-Report_English.pdf), (Accessed: 20 November 2020)
  31. PeruLNG, "Annual Report Peru lng", (2020). (https://perulng.com/wp-content/uploads/2021/08/Anual-Report-2020.pdf), (Accessed: 8 November 2020).
  32. Global Coffee Platform, "Statistical Bulletin: Peruvian Coffee", (2017). (https://www.ico.org/documents/cy2019-20/annual-review-2018-19-e.pdf), (Accessed: 15 November 2020).
  33. Bengoa, M.P., Ramos, M.M. and Shimabukuro, G.J.C., "Plan de negocios para el ingreso a la exportación del espárrago congelado", Pacific University, Lima, Peru, (2016). (https://repositorio.up.edu.pe/handle/11354/1684), (Accessed: 15 October 2020).
  34. Leturia, M.L.S. and Febres, L.M.C., "Caracterización de biomasa residual de la región Arequipa para la producción de biocombustibles", Enfoque UTE, Vol 6, (2015), 4-42. (https://doi.org/10.29019/enfoqueute.v6n4.77).
  35. Melgarejo, T.L. and Urquizo, R.A., "Influencia de la temperatura y concentración de ácido sulfúrico en la hidrólisis ácida de raquis del banano, variedad musa cavendish, para la obtención de bioetanol por saccharomyces cerevisiae atcc 4126", National University of Santa, Ancash, Peru, (2019). (http://repositorio.uns.edu.pe/handle/UNS/3389), (Accessed: 18 November 2020).
  36. Rodríguez, G. and Rodríguez García, S.D.L.M., "Extracción y caracterización de bioetanol a partir de biomasa lignocelulósica de caña de azúcar (Saccharum Officinarum L.)", University of Piura, Peru, (2015). (https://repositorio.unp.edu.pe/handle/UNP/394), (Accessed: 19 November 2020).
  37. Baltazar, L.A., "Obtención de biocombustible sólido de segunda generación a partir de tallos de quinua (Chenopodium quinoa Willd) y hojas de eucalipto (Eucaliptus globulus Labill), con máxima potencia calorífica", National University of the Altiplano, Puno, Peru, (2016). (http://repositorio.unap.edu.pe/handle/UNAP/3250), (Accessed: 15 November 2020)..
  38. Rozenský, L., Hájek, M., Vrba, Z., Pokorný, R., Hansen, J. and Lípa, J., "An analysis of renewable energy consumption efficiency in terms of greenhouse gas production in selected European countries", BioResources, Vol. 15, No. 4, (2020), 7714-7729. (https://doi.org/10.15376/biores.15.4.7714-7729).
  39. Dupont, C., Chiriac, R., Gauthier, G. and Toche, F., "Heat capacity measurements of various biomass types and pyrolysis residues", Fuel, Vol. 115, (2014), 644-651. (https://doi.org/10.1016/j.fuel.2013.07.086).
  40. Reyes, L., Abdelouahed, L., Mohabeer, C., Buvat, J.C. and Taouk, B., "Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin", Energy Conversion and Management, Vol. 244, (2021), 114459. (https://doi.org/10.1016/j.enconman.2021.114459).
  41. Niksa, S., "Predicting the macroscopic combustion characteristics of diverse forms of biomass in p. p. firing", Fuel, Vol. 283, (2021), 118911. (https://doi.org/10.1016/j.fuel.2020.118911).
  42. González-Rentería, S.M., Soto-Cruz, N.O., Rutiaga-Quiñones, O.M., Medrano-Roldán, H., Rutiaga-Quiñones, J.G. and López-Miranda, J., "Optimization of the enzymatic hydrolysis process of four straw bean varieties (Pinto villa, Pinto saltillo, Pinto mestizo and Flor de mayo)", Revista Mexicana de Ingeniería Química, Vol. 10, (2011), 17-28. (http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382011000100003&lng=es&tlng=es).
  43. Abascal, F.R., "Estudio de la obtención de bioetanol a partir de diferentes tipos de biomasa lignocelulósica. Matriz de reacciones y optimización", University of Cantabria, Spain, (2017). (https://repositorio.unican.es/xmlui/bitstream/handle/10902/12178/RAF.pdf?sequen), (Accessed: 15 November 2020).
  44. Wolf, L.D., "Pré-tratamento organossolve do bagaço de cana-de-açúcar para a produção de etanol e obtenção de xilooligômeros", Federal University of São Carlos, Sao Paulo, Brazil, (2011). (https://repositorio.ufscar.br/handle/ufscar/4071), (Accessed: 15 November 2019).
  45. Rocha, M.D.S., Almeida, R.M.R.G. and da Cruz, A.J.G., "Evaluation of energy potential of the agroindustrial residues from different Brazilian regions", Engevista, Vol. 19, (2017). 217-235. (https://doi.org/10.22409/engevista.v19i1.821).
  46. Adeniyi, A.G., Ighalo, J.O. and Amosa, M.K., "Modelling and simulation of banana (Musa spp.) waste pyrolysis for bio-oil production", Biofuels, Vol. 12, No. 7,  (2021), 879-883. (https://doi.org/10.1080/17597269.2018.1554949).
  47. Álvarez Narváez, K.M., "Evaluación del uso de saponinas de quinua como agente emulsificante en la producción de micropartículas de manteca de cacao para la liberación controlada de fármacos", Universidad de Quito, (2020), (https://rraae.cedia.edu.ec/Record/USFQ_c1b35a6f09c8ce4ad702955c0931c48a), (Accessed: 8 November 2019).
  48. Fernandes, I., Dos Santos, C.A.E., Oliveira, R., Reis, J., Calheiro, D.E., Reis, J.M. and Modolo, R., "Caracterização do resíduo industrial casca de arroz com vistas a sua utilização como biomassa", 6º Fórum Internacional de Resíduos Sólidos, (2015), 1–9. (http://www.institutoventuri.org.br/ojs/index.php/firs/article/view/616)
  49. Guo, Q., Wang, N., Liu, H., Li, Z., Lu, L. and Wang, C., "The bioactive compounds and biological functions of Asparagus officinalis L. – A review", Journal of Functional Foods, Vol. 65, (2020), 103727. (https://doi.org/10.1016/j.jff.2019.103727).
  50. El Saeidy, E., "Renewable energy in agriculture in Egypt: Technological fundamentals of briquetting cotton stalks as a biofuel", Humboldt-Universität zu Berlin, (2004). (https://edoc.hu-berlin.de/bitstream/handle/18452/15724/El-Saeidy.pdf?sequence=1), (Accessed: 1 May 2020).
  51. Igbinadolor, R., "Fermentation of cocoa (Theobroma Cacao L.) pod husk and its hydrolysate for ethanol production using improved starter cultures", University of Ibadan, Nigeria, (2012). (http://ir.library.ui.edu.ng/handle/123456789/801), (Accessed: 10 September 2020).
  52. Arias, O.R. and Meneses, C.J., "Caracterización físico-química de residuos agroindustriales (cascarilla de arroz y cascarilla de café), como materia prima potencial para la obtención de bioetanol", Autonomous National University of Nicaragua, Managua, (2016). (https://repositorio.unan.edu.ni/3793/).
  53. Gómez. E.A., Ríos, L.A. and Peña, J.D., "Effect of wood biomass pretreatment on ethanol yield", Información Tecnológica, Vol. 24, No. 5, (2013), 113-122. (http://dx.doi.org/10.4067/S0718-07642013000500013).
  54. Vasić, K., Knez, Ž. and Leitgeb, M., "Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources", Molecules, Vol. 26, (2021), 753. (http://dx.doi.org/10.3390/molecules26030753).
  55. Robak, K. and Balcerek, M., "Current state-of-the-art in ethanol production from lignocellulosic feedstocks", Microbiological Research, Vol. 240, (2020). (http://dx.doi.org/10.1016/j.micres.2020.126534).
  56. Liao, J.J., Abd Latif, N.H., Trache, D., Brosse, N. and Hussin, M.H., "Current advancement on the isolation, characterization and application of lignin", International Journal of Biological Macromolecules, Vol. 162, (2020), 985-1024. (https://doi.org/10.1016/j.ijbiomac.2020.06.168
  57. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., and Wyman, C.E., "Lignin valorization: improving lignin processing in the biorefinery", Science, Vol. 344, No. 6185, (2014). (http://dx.doi.org/10.1126/science.1246843).
  58. Lan, W. and Luterbacher, J.S., "A road to profitability from lignin via the production of bioactive molecules”, ACS Central Science, Vol. 5, No. 10, (2019), 1642-1644. (https://doi.org/10.1021/acscentsci.9b00954).
  59. Kim, H. and Choi, B., "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine", Renewable Energy, Vol. 35, (2010), 157-163. (https://doi.org/10.1016/j.renene.2009.04.008).
  60. INRENA, "Zonas de vida de Holdridge", (1995). (https://www.senamhi.gob.pe/load/file/01402SENA-9.pdf), (Accessed: 16 September 2020).
  61. SENAMHI, "Clasificación climática de warren thornthwaite", (2020). (https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru), (Accessed: 9 August 2020).