[1] Bukar, A.L., Tan, C.W., 2019. A review on stand-alone photovoltaic-wind energy system with fuel cell: system optimization and energy management strategy. Journal of cleaner production. (
https://doi.org/10.1016/j.jclepro.2019.02.228)
[2] Akikur, R.K., Saidur, R., Ping, H.W., Ullah, K.R., 2013. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews 27, 738-752. (
https://doi.org/10.1016/j.rser.2013.06.043)
[3] Haddad, A., Ramadan, M., Khaled, M., Ramadan, H., Becherif, M., 2020. Study of hybrid energy system coupling fuel cell, solar thermal system and photovoltaic cell. International Journal of Hydrogen Energy 45(25), 13564-13574. (
https://doi.org/10.1016/j.ijhydene.2018.06.019)
[4] Xu, X., Hu, W., Cao, D., Huang, Q., Chen, C., Chen, Z., 2020. Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renewable Energy 147, 1418-1431. (
https://doi.org/10.1016/j.renene.2019.09.099)
[5] Ribó-Pérez, David, Ángela Herraiz-Cañete, David Alfonso-Solar, Carlos Vargas-Salgado, and Tomás Gómez-Navarro. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER." Renewable Energy 174 (2021): 501-512. (
https://doi.org/10.1016/j.renene.2021.04.083)
[6] Purlu, Mikail, Sezen Beyarslan, and Belgin Emre Turkay. "Optimal Design of Hybrid Grid-connected Microgrid with Renewable Energy and Storage in a Rural Area in Turkey by Using HOMER." In 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), pp. 263-267. IEEE, 2021. (htttps://doi.org/10.23919/ELECO54474.2021.9677788)
[7] de la Cruz-Soto, Javier, Irati Azkona-Bedia, Nicolas Velazquez-Limon, and Tatiana Romero-Castanon. "A techno-economic study for a hydrogen storage system in a microgrid located in baja California, Mexico. Levelized cost of energy for power to gas to power scenarios." International Journal of Hydrogen Energy (2022). (https://doi.org/10.1016/j.ijhydene.2022.03.026)
[8] Jahangir, Mohammad Hossein, Mohammad Montazeri, Seyed Ali Mousavi, and Arash Kargarzadeh. "Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems." Renewable Energy 189 (2022): 52-65. (https://doi.org/10.1016/j.renene.2022.02.022)
[9] Shakya, Shree Raj, Iswor Bajracharya, Ramesh Ananda Vaidya, Prakash Bhave, Anzoo Sharma, Maheswar Rupakheti, and Tri Ratna Bajracharya. "Estimation of air pollutant emissions from captive diesel generators and its mitigation potential through microgrid and solar energy." Energy reports 8 (2022): 3251-3262. (https://doi.org/10.1016/j.egyr.2022.02.084)
[10] Roth, A., Boix, M., Gerbaud, V., Montastruc, L., Etur, P., 2019. A flexible metamodel architecture for optimal design of Hybrid Renewable Energy Systems (HRES)–Case study of a stand-alone HRES for a factory in Tropical Island. Journal of cleaner production 223, 214-225. (
https://doi.org/10.1016/j.jclepro.2019.03.095)
[12] Diab, F., Lan, H., Zhang, L., Ali, S., 2016. An environmentally friendly factory in Egypt based on hybrid photovoltaic/wind/diesel/battery system. Journal of Cleaner Production 112, 3884-3894. (
https://doi.org/10.1016/j.jclepro.2015.07.008)
[13] Al-Ghussain, L., Ahmed, H., Haneef, F., 2018. Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan. Sustainable Energy Technologies and Assessments 30, 24-36. (
https://doi.org/10.1016/j.seta.2018.08.008)
[14] Makhija, S.P., Dubey, S., 2019. Feasibility analysis of biomass-based grid-integrated and stand-alone hybrid energy systems for a cement plant in India. Environment, Development and Sustainability 21(2), 861-878. (
https://doi.org/10.1007/s10668-017-0064-0)
[15] Mirzaei, M., Vahidi, B., 2015. Feasibility analysis and optimal planning of renewable energy systems for industrial loads of a dairy factory in Tehran, Iran. Journal of Renewable and Sustainable Energy 7(6), 063114. (
https://doi.org/10.1063/1.4936591)
[16] Shezan, S.A., Julai, S., Kibria, M., Ullah, K., Saidur, R., Chong, W., Akikur, R., 2016. Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas. Journal of Cleaner Production 125, 121-132. (
https://doi.org/10.1016/j.jclepro.2016.03.014)
[18] Izadyar, N., Ong, H.C., Chong, W.T., Mojumder, J.C., Leong, K., 2016. Investigation of potential hybrid renewable energy at various rural areas in Malaysia. Journal of cleaner production 139, 61-73. (
https://doi.org/10.1016/j.jclepro.2016.07.167)
[19] Singh, A., Baredar, P., Gupta, B., 2017. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building. Energy Conversion and Management 145, 398-414. (
https://doi.org/10.1016/j.enconman.2017.05.014)
[20] Mandal, S., Das, B.K., Hoque, N., 2018. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. Journal of Cleaner Production 200, 12-27. (
https://doi.org/10.1016/j.jclepro.2018.07.257)
[21] Zahboune, H., Zouggar, S., Krajacic, G., Varbanov, P.S., Elhafyani, M., Ziani, E., 2016. Optimal hybrid renewable energy design in autonomous system using Modified Electric System Cascade Analysis and Homer software. Energy conversion and management 126, 909-922. (
https://doi.org/10.1016/j.enconman.2016.08.061)
[22] Sarkar, T., Bhattacharjee, A., Samanta, H., Bhattacharya, K., Saha, H., 2019. Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy conversion and management 191, 102-118. (
https://doi.org/10.1016/j.enconman.2019.04.025)
[24] Hanafizadeh, P., Eshraghi, J., Ahmadi, P., Sattari, A., 2016. Evaluation and sizing of a CCHP system for a commercial and office buildings. Journal of Building Engineering 5, 67-78. (
https://doi.org/10.1016/j.jobe.2015.11.003)
[25] Jahangir, M.H., F. Javanshir, and A. Kargarzadeh, Economic analysis and optimal design of hydrogen/diesel backup system to improve energy hubs providing the demands of sport complexes. International Journal of Hydrogen Energy, 2021. (
https://doi.org/10.1016/j.ijhydene.2021.01.187)
[26] Halabi, L.M., Mekhilef, S., Olatomiwa, L., Hazelton, J., 2017. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Conversion and Management 144, 322-339. (
https://doi.org/10.1016/j.enconman.2017.04.070)
[30] Mohammadi, M., Ghasempour, R., Astaraei, F.R., Ahmadi, E., Aligholian, A., Toopshekan, A., 2018. Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. International Journal of Electrical Power & Energy Systems 96, 261-273. (
https://doi.org/10.1016/j.ijepes.2017.10.017)
[31] Rad, M.A.V., Ghasempour, R., Rahdan, P., Mousavi, S., Arastounia, M., 2020. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy 190, 116421. (
https://doi.org/10.1016/j.energy.2019.116421)
[33] Gökçek, M., 2018. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination 435, 210-220. (
https://doi.org/10.1016/j.desal.2017.07.006)
[34] Aziz, A.S., Tajuddin, M.F.N., Adzman, M.R., Azmi, A., Ramli, M.A., 2019. Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renewable energy 138, 775-792. (
https://doi.org/10.1016/j.renene.2019.02.004)
[35] Shahzad, M.K., Zahid, A., ur Rashid, T., Rehan, M.A., Ali, M., Ahmad, M., 2017. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable energy 106, 264-273. (
https://doi.org/10.1016/j.renene.2017.01.033)