Document Type : Research Article

Authors

1 Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

2 Chemical Engineering Department, Polymer Engineering Group Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Abstract

Thermal Energy Storage (TES) for solar thermal systems has attracted great attention because of the intermittent availability of solar energy. In the current paper, new combinations of several Phase Change Materials (PCMs) including a type of paraffin and some mineral compounds like ammonium nitrate and magnesium nitrate hexahydrate were exanimated and their thermo-physical properties were compared. This study targets solar heating systems at different temperature intervals for the TES. Another new approach of this study is to determine the effect of Multi-Wall Carbon Nanotubes (MWCNTs) with two diameters (D) of 8 and 10-20 nm on paraffin's thermophysical property to improve these properties. An innovative method was used to measure Electrical Conductivity (EC) as it is easier to measure than thermal conductivity (K) to study the effect of nanoparticles on PCM behavior. The results showed that the highest values of improvement over paraffin properties were related to 5% nanoparticle additive for both nanoparticle diameters among the percentages studied. The addition of 5 % nanoparticles with 10-20 nm and 8 nm to paraffin at 25 ° C increased heat conductivity by 142% and 156%, respectively. The addition of nanoparticles to paraffin improved EC several times such that a diameter of 8 nm made a 300% increase in EC compared to 10-20 nm.
 

Keywords

Main Subjects

  1. Khyad, A., Samrani, H., Bargach, M. and Tadili, R., "Energy storage with pcms: Experimental analysis of paraffin’s phase change phenomenon & improvement of its properties", J Mater Environ Sci, Vol. 7, No. 7, (2016), 2551 DOI: https://www.jmaterenvironsci.com/Document/vol7/vol7_N7/271-MES-2362-Khyad.pdf.
  2. Cellat, K., Tezcan, F., Kardaş, G. and Paksoy, H., "Comprehensive investigation of butyl stearate as a multifunctional smart concrete additive for energy-efficient buildings", International Journal of Energy Research, Vol. 43, No. 13, (2019), 7146-7158 DOI: https://doi.org/10.1002/er.4740.
  3. Babapoor, A., Azizi, M. and Karimi, G., "Thermal management of a li-ion battery using carbon fiber-pcm composites", Applied Thermal Engineering, Vol. 82, No., (2015), 281-290 DOI: https://doi.org/10.1016/j.applthermaleng.2015.02.068.
  4. Karimi, G., Azizi, M. and Babapoor, A., "Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites", Journal of Energy Storage, Vol. 8, No., (2016), 168-174 DOI: https://doi.org/10.1016/j.est.2016.08.005.
  5. Samimi, F., Babapoor, A., Azizi, M. and Karimi, G., "Thermal management analysis of a li-ion battery cell using phase change material loaded with carbon fibers", Energy, Vol. 96, No., (2016), 355-371 DOI: https://doi.org/10.1016/j.energy.2015.12.064.
  6. Kinkelin, C., Lips, S., Soupremanien, U., Remondière, V., Dijon, J., Le Poche, H., Ollier, E., Zegaoui, M., Rolland, N., Rolland, P.-A., Lhostis, S., Descouts, B., Kaplan, Y. and Lefèvre, F., "Theoretical and experimental study of a thermal damper based on a cnt/pcm composite structure for transient electronic cooling", Energy Conversion and Management, Vol. 142, No., (2017), 257-271 DOI: https://doi.org/10.1016/j.enconman.2017.03.034.
  7. Ali, H.M., Ashraf, M.J., Giovannelli, A., Irfan, M., Irshad, T.B., Hamid, H.M., Hassan, F. and Arshad, A., "Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various pcms", International Journal of Heat and Mass Transfer, Vol. 123, No., (2018), 272-284 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.044.
  8. Khan, M.M.A., Ibrahim, N.I., Mahbubul, I.M., Muhammad. Ali, H., Saidur, R. and Al-Sulaiman, F.A., "Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review", Solar Energy, Vol. 166, No., (2018), 334-350 DOI: https://doi.org/10.1016/j.solener.2018.03.014.
  9. Shafieian, A., Khiadani, M. and Nosrati, A., "A review of latest developments, progress, and applications of heat pipe solar collectors", Renewable and Sustainable Energy Reviews, Vol. 95, No., (2018), 273-304 DOI: https://doi.org/10.1016/j.rser.2018.07.014.
  10. Zhou, F., Ji, J., Yuan, W., Zhao, X. and Huang, S., "Study on the pcm flat-plate solar collector system with antifreeze characteristics", International Journal of Heat and Mass Transfer, Vol. 129, No., (2019), 357-366 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.114.
  11. Essa, M.A., Mostafa, N.H. and Ibrahim, M.M., "An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with pcms", Energy Conversion and Management, Vol. 177, No., (2018), 1-10 DOI: https://doi.org/10.1016/j.enconman.2018.09.045.
  12. He, B., Martin, V. and Setterwall, F., "Phase transition temperature ranges and storage density of paraffin wax phase change materials", Energy, Vol. 29, No. 11, (2004), 1785-1804 DOI: https://doi.org/10.1016/j.energy.2004.03.002.
  13. Shima, P.D. and Philip, J., "Role of thermal conductivity of dispersed nanoparticles on heat transfer properties of nanofluid", Industrial & Engineering Chemistry Research, Vol. 53, No. 2, (2014), 980-988 DOI: https://doi.org/10.1021/ie403086g.
  14. Das, P.K., "A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids", Journal of Molecular Liquids, Vol. 240, No., (2017), 420-446 DOI: https://doi.org/10.1016/j.molliq.2017.05.071.
  15. Zerradi, H., Mizani, S., Loulijat, H., Dezairi, A. and Ouaskit, S., "Population balance equation model to predict the effects of aggregation kinetics on the thermal conductivity of nanofluids", Journal of Molecular Liquids, Vol. 218, No., (2016), 373-383 DOI: https://doi.org/10.1016/j.molliq.2016.02.064.
  16. Guo, H. and Zhao, N., "Interfacial layer simulation and effect on cu-ar nanofluids thermal conductivity using molecular dynamics method", Journal of Molecular Liquids, Vol. 259, No., (2018), 40-47 DOI: https://doi.org/10.1016/j.molliq.2018.03.001.
  17. Sheikholeslami, M., "Solidification of nepcm under the effect of magnetic field in a porous thermal energy storage enclosure using cuo nanoparticles", Journal of Molecular Liquids, Vol. 263, No., (2018), 303-315 DOI: https://doi.org/10.1016/j.molliq.2018.04.144.
  18. Babapoor, A., Karimi, G. and Sabbaghi, S., "Thermal characteristic of nanocomposite phase change materials during solidification process", Journal of Energy Storage, Vol. 7, No., (2016), 74-81 DOI: https://doi.org/10.1016/j.est.2016.05.006.
  19. Sheikholeslami, M., "Numerical modeling of nano enhanced pcm solidification in an enclosure with metallic fin", Journal of Molecular Liquids, Vol. 259, No., (2018), 424-438 DOI: https://doi.org/10.1016/j.molliq.2018.03.006.
  20. Lohrasbi, S., Sheikholeslami, M. and Ganji, D.D., "Discharging process expedition of nepcm in fin-assisted latent heat thermal energy storage system", Journal of Molecular Liquids, Vol. 221, No., (2016), 833-841 DOI: https://doi.org/10.1016/j.molliq.2016.06.044.
  21. Yan, S.-R., Kalbasi, R., Nguyen, Q. and Karimipour, A., "Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of mwcnts into liquid paraffin: Experimental study and modeling of surface tension", Journal of Molecular Liquids, Vol. 310, No., (2020), 113235 DOI: https://doi.org/10.1016/j.molliq.2020.113235.
  22. Sharif, M.K.A., Al-Abidi, A.A., Mat, S., Sopian, K., Ruslan, M.H., Sulaiman, M.Y. and Rosli, M.A.M., "Review of the application of phase change material for heating and domestic hot water systems", Renewable and Sustainable Energy Reviews, Vol. 42, No., (2015), 557-568 DOI: https://doi.org/10.1016/j.rser.2014.09.034.
  23. Giro-Paloma, J., Martínez, M., Cabeza, L.F. and Fernández, A.I., "Types, methods, techniques, and applications for microencapsulated phase change materials (mpcm): A review", Renewable and Sustainable Energy Reviews, Vol. 53, No., (2016), 1059-1075 DOI: https://doi.org/10.1016/j.rser.2015.09.040.
  24. Jamekhorshid, A., Sadrameli, S.M. and Farid, M., "A review of microencapsulation methods of phase change materials (pcms) as a thermal energy storage (tes) medium", Renewable and Sustainable Energy Reviews, Vol. 31, No., (2014), 531-542 DOI: https://doi.org/10.1016/j.rser.2013.12.033.
  25. Ibrahim, N.I., Al-Sulaiman, F.A., Rahman, S., Yilbas, B.S. and Sahin, A.Z., "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review", Renewable and Sustainable Energy Reviews, Vol. 74, No., (2017), 26-50 DOI: https://doi.org/10.1016/j.rser.2017.01.169.
  26. Tao, Z., Wang, H., Liu, J., Zhao, W., Liu, Z. and Guo, Q., "Dual-level packaged phase change materials – thermal conductivity and mechanical properties", Solar Energy Materials and Solar Cells, Vol. 169, No., (2017), 222-225 DOI: https://doi.org/10.1016/j.solmat.2017.05.030.
  27. Yang, J., Tang, L.-S., Bao, R.-Y., Bai, L., Liu, Z.-Y., Yang, W., Xie, B.-H. and Yang, M.-B., "Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets", Chemical Engineering Journal, Vol. 315, No., (2017), 481-490 DOI: https://doi.org/10.1016/j.cej.2017.01.045.
  28. S.Jegadheeswaran, Pohekar, S.D. and Kousksou, T., "Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation", Energy Procedia, Vol. 14, No., (2012), 643-648 DOI: https://doi.org/10.1016/j.egypro.2011.12.989.
  29. Shukla, A., Buddhi, D. and Sawhney, R.L., "Thermal cycling test of few selected inorganic and organic phase change materials", Renewable Energy, Vol. 33, No. 12, (2008), 2606-2614 DOI: https://doi.org/10.1016/j.renene.2008.02.026.
  30. Qureshi, Z.A., Ali, H.M. and Khushnood, S., "Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review", International Journal of Heat and Mass Transfer, Vol. 127, No., (2018), 838-856 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.
  31. Karaipekli, A., Biçer, A., Sarı, A. and Tyagi, V.V., "Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes", Energy Conversion and Management, Vol. 134, No., (2017), 373-381 DOI: https://doi.org/10.1016/j.enconman.2016.12.053.
  32. Cárdenas, B. and León, N., "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques", Renewable and Sustainable Energy Reviews, Vol. 27, No., (2013), 724-737 DOI: https://doi.org/10.1016/j.rser.2013.07.028.
  33. Fan, L. and Khodadadi, J.M., "An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (nepcm)", International Journal of Thermal Sciences, Vol. 62, No., (2012), 120-126 DOI: https://doi.org/10.1016/j.ijthermalsci.2011.11.005.
  34. Liu, L., Su, D., Tang, Y. and Fang, G., "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review", Renewable and Sustainable Energy Reviews, Vol. 62, No., (2016), 305-317 DOI: https://doi.org/10.1016/j.rser.2016.04.057.
  35. Liu, M., Saman, W. and Bruno, F., "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems", Renewable and Sustainable Energy Reviews, Vol. 16, No. 4, (2012), 2118-2132 DOI: https://doi.org/10.1016/j.rser.2012.01.020.
  36. Babapoor, A., Karimi, G., Golestaneh, S.I. and Mezjin, M.A., "Coaxial electro-spun peg/pa6 composite fibers: Fabrication and characterization", Applied Thermal Engineering, Vol. 118, No., (2017), 398-407 DOI: https://doi.org/10.1016/j.applthermaleng.2017.02.119.
  37. Babapoor, A., Karimi, G. and Khorram, M., "Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning", Applied Thermal Engineering, Vol. 99, No., (2016), 1225-1235 DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.026.
  38. Munyalo, J.M. and Zhang, X., "Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review", Journal of Molecular Liquids, Vol. 265, No., (2018), 77-87 DOI: https://doi.org/10.1016/j.molliq.2018.05.129.
  39. Nitsas, M. and Koronaki, I.P., "Performance analysis of nanoparticles-enhanced pcm: An experimental approach", Thermal Science and Engineering Progress, Vol. 25, No., (2021), 100963 DOI: https://doi.org/10.1016/j.tsep.2021.100963.
  40. Xu, B., Li, P. and Chan, C., "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments", Applied Energy, Vol. 160, No., (2015), 286-307 DOI: https://doi.org/10.1016/j.apenergy.2015.09.016.
  41. Olfian, H., Ajarostaghi, S.S.M. and Ebrahimnataj, M., "Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids", Solar Energy, Vol. 211, No., (2020), 265-282 DOI: https://doi.org/10.1016/j.solener.2020.09.056.
  42. Raam Dheep, G. and Sreekumar, A., "Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – a review", Energy Conversion and Management, Vol. 83, No., (2014), 133-148 DOI: https://doi.org/10.1016/j.enconman.2014.03.058.
  43. Kibria, M.A., Anisur, M.R., Mahfuz, M.H., Saidur, R. and Metselaar, I.H.S.C., "A review on thermophysical properties of nanoparticle dispersed phase change materials", Energy Conversion and Management, Vol. 95, No., (2015), 69-89 DOI: https://doi.org/10.1016/j.enconman.2015.02.028.
  44. Nazir, H., Batool, M., Bolivar Osorio, F.J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin and Kannan, A.M., "Recent developments in phase change materials for energy storage applications: A review", International Journal of Heat and Mass Transfer, Vol. 129, No., (2019), 491-523 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126.
  45. Veerakumar, C. and Sreekumar, A., "Phase change material based cold thermal energy storage: Materials, techniques and applications – a review", International Journal of Refrigeration, Vol. 67, No., (2016), 271-289 DOI: https://doi.org/10.1016/j.ijrefrig.2015.12.005.
  46. Zeng, J.L., Cao, Z., Yang, D.W., Xu, F., Sun, L.X., Zhang, X.F. and Zhang, L., "Effects of mwnts on phase change enthalpy and thermal conductivity of a solid-liquid organic pcm", Journal of Thermal Analysis and Calorimetry, Vol. 95, No. 2, (2009), 507-512 DOI: https://doi.org/10.1007/s10973-008-9275-9.
  47. Yu, Z.-T., Fang, X., Fan, L.-W., Wang, X., Xiao, Y.-Q., Zeng, Y., Xu, X., Hu, Y.-C. and Cen, K.-F., "Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes", Carbon, Vol. 53, No., (2013), 277-285 DOI: https://doi.org/10.1016/j.carbon.2012.10.059.
  48. Cui, Y., Liu, C., Hu, S. and Yu, X., "The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials", Solar Energy Materials and Solar Cells, Vol. 95, No. 4, (2011), 1208-1212 DOI: https://doi.org/10.1016/j.solmat.2011.01.021.
  49. Kim, S. and Drzal, L.T., "High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets", Solar Energy Materials and Solar Cells, Vol. 93, No. 1, (2009), 136-142 DOI: https://doi.org/10.1016/j.solmat.2008.09.010.
  50. Fan, L.-W., Zhu, Z.-Q., Zeng, Y., Lu, Q. and Yu, Z.-T., "Heat transfer during melting of graphene-based composite phase change materials heated from below", International Journal of Heat and Mass Transfer, Vol. 79, No., (2014), 94-104 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.001.
  51. Ali, A.H., Ibrahim, S.I., Jawad, Q.A., Jawad, R.S. and Chaichan, M.T., "Effect of nanomaterial addition on the thermophysical properties of iraqi paraffin wax", Case Studies in Thermal Engineering, Vol. 15, No., (2019), 100537 DOI: https://doi.org/10.1016/j.csite.2019.100537.
  52. Jawad, Q.A., Mahdy, A.M.J., Khuder, A.H. and Chaichan, M.T., "Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-sic", Case Studies in Thermal Engineering, Vol. 19, No., (2020), 100622 DOI: https://doi.org/10.1016/j.csite.2020.100622.
  53. Sharma, S.D. and Sagara, K., "Latent heat storage materials and systems: A review", International Journal of Green Energy, Vol. 2, No. 1, (2005), 1-56 DOI: https://www.tandfonline.com/doi/abs/10.1081/GE-200051299.
  54. Sedov, I.A., Muhametzyanov, T.A. and Solomonov, B.N., "A procedure for calibration of differential scanning calorimeters", Thermochimica Acta, Vol. 639, No., (2016), 10-13 DOI: https://doi.org/10.1016/j.tca.2016.07.010.
  55. Souayfane, F., Fardoun, F. and Biwole, P.-H., "Phase change materials (pcm) for cooling applications in buildings: A review", Energy and Buildings, Vol. 129, No., (2016), 396-431 DOI: https://doi.org/10.1016/j.enbuild.2016.04.006.
  56. He, M., Yang, L., Lin, W., Chen, J., Mao, X. and Ma, Z., "Preparation, thermal characterization and examination of phase change materials (pcms) enhanced by carbon-based nanoparticles for solar thermal energy storage", Journal of Energy Storage, Vol. 25, No., (2019), 100874 DOI: https://doi.org/10.1016/j.est.2019.100874.
  57. Fan, L.-W., Fang, X., Wang, X., Zeng, Y., Xiao, Y.-Q., Yu, Z.-T., Xu, X., Hu, Y.-C. and Cen, K.-F., "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials", Applied Energy, Vol. 110, No., (2013), 163-172 DOI: https://doi.org/10.1016/j.apenergy.2013.04.043.