Document Type : Review Article

Author

1 Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2 Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Abstract

Distributed flexible ac transmission system (D-FACTS) is a light-weight version of FACTS, which it is easily allocated and costs less than flexible ac transmission system (FACTS) devices. They have potential benefits to improve the system stability and improvement in power quality in microgrid (MG). The integration of distributed energy sources, loads, electrical energy storage devices, and electronic power devices, as well as the operation of microgrids in connected or island-connected modes has expanded their use. It is a small main grid that can generate electricity when disconnected from the main network. In addition, microgrids reduce the high investment costs required to upgrade the network. The application of DFACTS devices for improving the microgrid operation has been investigated by some researches. This paper provides a review of impact and role of various DFACTS devices in the function of microgrids, which has been reported in recent years in various pieces of the literature. DFACTS devices with their properties are described. Finally, a useful reference and framework for the study is provided for future expansion of DFACTS devices so as to improve the performance of the microgrid.

Keywords

Main Subjects

  1. Vaez-Zadeh, S. and Zamanifar, M., "Efficiency optimization control of IPM synchronous motor drives with online parameter estimation", Journal of Intelligent Procedures in Electrical Technology, Vol. 2, (2011), 57-65. (https://www.sid.ir/paper/573404/en).
  2. Shahgholian, Gh., Rezaei, M.H., Etesami, A. and Yousefi, M.R., "Simulation of speed sensor less control of PMSM based on DTC method with MRAS", Proceedings of the IEEE/IPEC, Vol. 1, (2010), 40-45. (http://dx.doi.org/10.1109/IPECON.2010.5697127).
  3. Peiravan, Z., Delshad, M. and Amini, M.R., "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, Vol. 13, (2022), 31-47. (https://dorl.net/dor/20.1001.1.23223871.1401.13.50.2.3).
  4. Hosseini, E., Shahgholian, Gh., Mahdavi-Nasab, H. and Mesrinejad, F., "Variable speed wind turbine pitch angle control using three-term fuzzy controller", International Journal of Smart Electrical Engineering, Vol. 11, (2022), 63-70. (https://dorl.net/dor/20.1001.1.22519246.2022.11.02.2.0).
  5. Faiz, J., Shahgholian, Gh. and Ehsan, M., "Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter", European Transactions on Electrical Power, Vol. 18, (2008), 29-49. (https://doi.org/10.1002/etep.160).
  6. Mirtalaei, S., Mohtaj, M. and Karami, H., "Design and implementation of a high step-up boost-sepic hybrid converter with soft switching", Journal of Intelligent Procedures in Electrical Technology, Vol. 6, (2016), 27-34. (https://dorl.net/dor/20.1001.1.23223871.1394.6.24.3.3).
  7. Moradi Nezhad, S., Saghafi, H., Delshad, M. and Sadeghi, R., "Nonparametric correlative-probabilistic microgrid power energy management based sine-cosine algorithm", IEEE Access, Vol. 9, (2021), 156323-156336. (https://doi.org/10.1109/ACCESS.2021.3123981).
  8. Shahgholian, Gh., and Shafaghi, P., "State space modeling and eigenvalue analysis of the permanent magnet DC motor drive system", Proceedings of the IEEE/ICECT, Vol. 1, Kuala Lumpur, Malaysia, (2010), 63-67. (https://doi.org/10.1109/ICECTECH.2010.5479987).
  9. Ghasemi, M., Roosta, A. and Fani, B., "Coordinated control of FACTS devices by using ADALINE neural network to enhance the transient stability of power system", Journal of Intelligent Procedures in Electrical Technology, Vol. 3, (2012), 27-40. (https://dorl.net/dor/20.1001.1.23223871.1391.3.9.4.3).
  10. Shabani, S., Delshad, M. and Sadeghi, R., "A soft switched non-isolated high step-up dc-dc converter with low number of auxiliary elements", Journal of Intelligent Procedures in Electrical Technology, Vol. 13, (2022), 125-138. (https://dorl.net/dor/20.1001.1.23223871.1401.13.51.8.1).
  11. Samadinasab, S., Namdari, F. and Bakhshipoor, M., "A novel approach for earthing system design using finite element method", Journal of Intelligent Procedures in Electrical Technology, Vol. 8, (2017), 54-63. (https://dorl.net/dor/20.1001.1.23223871.1396.8.29.6.0).
  12. Badal, F.R., Das, P., Sarker, S.K. and Das, S.K., "A survey on control issues in renewable energy integration and microgrid", Protection and Control of Modern Power Systems, Vol. 4, (2019), 1-27. (https://doi.org/10.1186/s41601-019-0122-8).
  13. Ahmadpour, A., Shenava, S.S., Dejamkhooy, A. and Mokaramian, E., "Electromagnetic force analysis of transformer on the ferroresonance due to consecutive 3–phase short–circuit faults using finite element method (FEM)", Journal of Intelligent Procedures in Electrical Technology, Vol. 11, (2020), 47-60. (https://dorl.net/dor/20.1001.1.23223871.1399.11.41.4.3).
  14. Fooladgar, M., Rok-Rok, E., Fani, B. and Shahgholian, Gh., "Evaluation of the trajectory sensitivity analysis of the DFIG control parameters in response to changes in wind speed and the line impedance connection to the grid DFIG", Journal of Intelligent Procedures in Electrical Technology, Vol. 5, (2015), 37-54. (https://dorl.net/dor/20.1001.1.23223871.1393.5.20.4.9).
  15. Abedi, A., Rezaie, B., Khosravi, A. and Shahabi, M., "A novel local control technique for converter-based renewable energy resources in the stand-alone dc micro-grids", Journal of Renewable Energy and Environment, Vol. 7, No. 2, (2020), 52-63. (https://dx.doi.org/10.30501/jree.2020.107365).
  16. Zamanian, S., Sadi, S., Ghaffarpour, R. and Mahdavian, A., "Inverter-based microgrid dynamic stability analysis considering inventory of dynamic and static load models", Journal of Intelligent Procedures in Electrical Technology, Vol. 11, (2021), 91-109. (https://dorl.net/dor/20.1001.1.23223871.1399.11.44.6.1).
  17. Hosseini, E. and Shahgholian, Gh., "Partial- or full-power production in WECS: A survey of control and structural strategies", European Power Electronics and Drives, Vol. 27, (2017), 125-142. (https://doi.org/10.1080/09398368.2017.1413161).
  18. Haghshenas, Gh., Mirtalaei, S.M.M., Mordmand, H. and Shahgholian, Gh., "High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, (2019), 1-16. (http://dx.doi.org/10.1142/S0218126619500142), (ISSN: 0218-1266).
  19. Hosseini, E. and Shahgholian, Gh., "Different types of pitch angle control strategies used in wind turbine system applications", Journal of Renewable Energy and Environment (JREE), Vol. 4, (2017), 20-35. (https://dx.doi.org/10.30501/jree.2017.70103).
  20. Mahdavian, M., Shahgholian, Gh., Janghorbani, M., Soltani, B. and Wattanapongsakorn, N., "Load frequency control in power system with hydro turbine under various conditions", 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, (2015), 1-5. (http://dx.doi.org/10.1109/ECTICon.2015.7206938).
  21. Aghadavoodi, E. and Shahgholian, Gh., "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, Vol. 133, (2018), 381-395. (http://dx.doi.org/10.1016/j.applthermaleng.2018.01.075).
  22. Hosseini, E. and Shahgholian, Gh., "Output power levelling for DFIG wind turbine system using intelligent pitch angle control", Automatika, Vol. 58, (2017), 363-374. (http://dx.doi.org/10.1080/00051144.2018.1455017).
  23. Khani, K. and Shahgholian, Gh., "Analysis and optimization of frequency control in isolated microgrid with double-fed induction-generators based wind turbine", Journal of International Council on Electrical Engineering, Vol. 9, (2019), 24-37. (http://dx.doi.org/10.1080/22348972.2018.1564547).
  24. Yengijeh, N.P., Moradi CheshmehBeigi, H. and Hajizadeh, A., "Inertia emulation with the concept of virtual supercapacitor for islanded dc microgrid", Proceedings of the IEEE/IWEC, Vol. 1, Shahrood, Iran, (2021). (http://dx.doi.org/10.1109/IWEC52400.2021.9467013).
  25. Shahgholian, Gh., "An overview of hydroelectric power plant: Operation, modeling, and control", Journal of Renewable Energy and Environment (JREE), Vol. 7, (2020), 14-28. (https://dx.doi.org/10.30501/jree.2020.221567.1087).
  26. Bagheri, S. and Moradi CheshmehBeigi, H., "DC microgrid voltage stability through inertia enhancement using a bidirectional dc-dc converter", Proceedings of the IEEE/IWEC, Vol. 1, Shahrood, Iran, (2021), 1-5. (https://dx.doi.org/10.1109/IWEC52400.2021.9467032).
  27. Keyvani-Boroujeni, B., Fani, B., Shahgholian, Gh. and Alhelou, H.H., "Virtual impedance-based droop control scheme to avoid power quality and stability problems in VSI-dominated microgrids", IEEE Access, Vol. 9, (2012), 144999-145011. (https://doi.org/10.1109/ACCESS.2021.3122800).
  28. Karimi, H., Fani, B. and Shahgholian, Gh., "Coordinated protection scheme based on virtual impedance control for loop-based microgrids", Journal of Intelligent Procedures in Electrical Technology, Vol. 12, (2021), 15-32. (https://jipet.iaun.iau.ir/article_678745.html?lang=en)
  29. Shahgholian, Gh. and Ebrahimi-Salary, M., "Effect of load shedding strategy on interconnected power systems stability when a blackout occurs", International Journal of Computer and Electrical Engineering, Vol. 4, No. 2, (2012), 212-216. (http://dx.doi.org/10.7763/IJCEE.2012.V4.481).
  30. Abbasi, M., Nafar, M. and Simab, M., "Management and control of microgrids connected to three-phase network with the approach of activating current limitation under unbalanced errors using fuzzy intelligent method with the presence of battery, wind, photovoltaic and diesel sources", Journal of Intelligent Procedures in Electrical Technology, Vol. 13, (2022), 59-71. (https://jipet.iaun.iau.ir/article_682223.html?lang=en).
  31. Gorji, S., Zamanian, S. and Moazzami, M., "Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm", Journal of Intelligent Procedures in Electrical Technology, Vol. 11, (2020), 49-68. (https://jipet.iaun.iau.ir/article_674939.html?lang=en).
  32. Shahgholian, Gh., Arezoomand, M. and Mahmoodian, H., "Analysis and simulation of the single-machine infinite-bus with power system stabilizer and parameters variation effects", Proceedings of the IEEE/ICIAS, Vol. 1, Kuala Lumpur, Malaysia, (2007), 161-171. (http://dx.doi.org/10.1109/ICIAS.2007.4658368).
  33. Shahgholian, Gh., "Analysis and simulation of dynamic performance for DFIG-based wind farm connected to a distrubition system", Energy Equipment and Systems, Vol. 6, No. 2,  (2018), 117-130. (https://dx.doi.org/10.22059/ees.2018.31531).
  34. Fayazi, H., Fani, B., Moazzami, M. and Shahgholian, Gh., "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", International Journal of Electrical Power and Energy Systems, Vol. 131, (2021), 107069. (https://dx.doi.org/10.1016/j.ijepes.2021.107069).
  35. Kiani, A., Fani, B. and Shahgholian, Gh., "A multi-agent solution to multi-thread protection of DG-dominated distribution networks", International Journal of Electrical Power and Energy Systems, Vol. 130, (2021), 106921. (https://dx.doi.org/10.1016/j.ijepes.2021.106921).
  36. Singh, B., Al-Haddad, K. and Chandra, A., "A review of active filters for power quality improvement", IEEE Transactions on Industrial Electronics, Vol. 46, No. 5, (1999), 960-971. (http://dx.doi.org/10.1109/41.793345).
  37. Kadam, S.S. and Kanse, Y.K., "DSTATCOM for power quality improvement", Proceedings of the IEEE/ICCSDET, Vol. 1, Kottayam, India, (2018), 1-5. (http://dx.doi.org/10.1109/ICCSDET.2018.8821066).
  38. Fayazi, H., Moazzami, M., Fani, B. and Shahgholian, Gh., "Coordination of protection equipment in synchronous generator-based microgrids with regard to maintaining first swing stability", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, (2023), 1-14. (https://jipet.iaun.iau.ir/article_682345.html).
  39. Omar, A.I., Aleem, S.H.E.A., El-Zahab, E.E.A., Algablawy, M. and Ali, Z.M., "An improved approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm", ISA Transactions, Vol. 95, (2019), 110-129. (http://dx.doi.org/10.1016/j.isatra.2019.05.001).
  40. Patrao, I., Figueres, E., Garcerá, G. and González-Medina, R., "Microgrid architectures for low voltage distributed generation", Renewable and Sustainable Energy Reviews, Vol. 43, (2015), 415-424. (https://doi.org/10.1016/j.rser.2014.11.054).
  41. Micallef, A., "Review of the current challenges and methods to mitigate power quality issues in single-phase microgrids", IET Generation, Transmission and Distribution, Vol. 13, No. 1, (2019), 2044-2054. (https://doi.org/10.1049/iet-gtd.2018.6020).
  42. Shahgholian, Gh., Mahdavian, M., Emami, A. and Ahmadzade, B., "Improve power quality using static synchronous compensator with fuzzy logic controller", Proceedings of the IEEE/ICEMS, Beijing, China, (2011), 1-5. (https://doi.org/10.1109/ICEMS.2011.6073830).
  43. Mahdavian, M. and Jabbari, M., "Design and implementation of a shunt active power filter for enhancing power quality", Journal of Intelligent Procedures in Electrical Technology, Vol. 1, No. 4, (2011), 25-32. (https://jipet.iaun.iau.ir/article_550750.html?lang=en).
  44. Shahgholian, Gh. and Izadpanahi, N., "Improving the performance of wind turbine equipped with DFIG using STATCOM based on input-output feedback linearization controller", Energy Equipment and Systems, Vol. 4, No. 1, (2016), 65-79. (http://dx.doi.org/10.22059/EES.2016.20128).
  45. Samal, S. and Hota, P.K., "Design and analysis of solar PV-fuel cell and wind energy based microgrid system for power quality improvement", Journal Cogent Engineering, Vol. 4, (2017), 1-21. (http://dx.doi.org/10.1080/23311916.2017.1402453).
  46. Shahgholian, Gh., Shafaghi, P., Moalem, S. and Mahdavian, M., "Damping power system oscillations in single-machine infinite-bus power system using a STATCOM", Proceedding of the IEEE/ICCEE, Vol. 1, Dubai, United Arab Emirates, (2009), 130-134. (http://dx.doi.org/10.1109/ICCEE.2009.30).
  47. Faiz, J. and Shahgholian, Gh., "Modeling and damping controller design for static var compensator", Proceedings of the IEEE/POWERENG, Vol. 1, Riga, Latvia, (2015), 405-409. (http://dx.doi.org/10.1109/PowerEng.2015.7266351).
  48. Parastvand, H., Bass, O., Masoum, M.A.S., Chapman, A. and Lachowicz, S., "Cyber-security constrained placement of FACTS devices in power networks from a novel topological perspective", IEEE Access, Vol. 8, (2020), 108201-108215. (https://doi.org/10.1109/ACCESS.2020.3001308).
  49. Kamarposhti, M.A., Shokouhandeh, H., Colak, I., Band, S.S. and Eguchi, K., "Optimal location of FACTS devices in order to simultaneously improving transmission losses and stability margin using artificial bee colony algorithm", IEEE Access, Vol. 9, (2021), 125920-125929. (https://doi.org/10.1109/ACCESS.2021.3108687).
  50. Bone, G., Pantoš, M. and Mihalič, R., "Newtonian steady state modeling of FACTS devices using unaltered power-flow routines", IEEE Transactions on Power Systems, Vol. 34, (2019), 1216-1226. (https://doi.org/10.1109/TPWRS.2018.2876407).
  51. Nazaripouya, H. and Mehraeen, S., "Modeling and nonlinear optimal control of weak/islanded grids using FACTS device in a game theoretic approach", IEEE Transactions on Control Systems Technology, Vol. 24, No. 1, (2016), 158-171. (https://doi.org/10.1109/TCST.2015.2421434).
  52. Frolov, V., Thakurta, P.G., Backhaus, S., Bialek, J. and Chertkov, M., "Operations- and uncertainty-aware installation of FACTS devices in a large transmission system", IEEE Transactions on Control of Network Systems, Vol. 6, No. 3, (2019), 961-970. (https://doi.org/10.1109/TCNS.2019.2899104).
  53. Shahgholian, Gh., Maghsoodi, M. and Movahedi, A., "Fuzzy and proportional integral controller design for thyristor controlled series capacitor and power system stabilizer to improve power system stability", Revue Roumaine des Sciences Techniques Serie Electrotechnique et Energetique, Vol. 61, (2016), 418-423. (https://www.semanticscholar.org/paper/FUZZY-AND-PROPORTIONAL-INTEGRAL-CONTROLLER-DESIGN-Shahgholian-Maghsoodi/010bcb370f286a5c11c09c6238e32be0d4546f99).
  54. Motaghi, A., AaLIzadeh, M. and Abbasian, M., "Reactive power compensation and reducing network transmission losses by optimal placement of parallel and series FACTS devices with fuzzy-evolutionary method", Journal of Intelligent Procedures in Electrical Technology, Vol. 9, (2019), 27-38. (https://jipet.iaun.iau.ir/article_620188.html?lang=en).
  55. Kazemi-Zahrani, A. and Parastegari, M., "Designing PSS and SVC parameters simultaneously through the improved quantum algorithm in the multi-machine power system", Journal of Intelligent Procedures in Electrical Technology, Vol. 8, (2017), 68-75. (https://jipet.iaun.iau.ir/article_597478.html?lang=en).
  56. Ghasemi, S. and Gholipoor, E., "Reactive power optimization in the presence of FACTS devices using evolutionary algorithms based on fuzzy logic", Journal of Intelligent Procedures in Electrical Technology, Vol. 6, (2015), 45-54. (https://dorl.net/dor/20.1001.1.23223871.1394.6.23.6.4).
  57. Zanjani, S., Azimi, Z. and Azimi, M., "Assesment and analyze hybride control system in distribution static synchronous compensator based current source converter", Journal of Intelligent Procedures in Electrical Technology, Vol. 2, (2011), 59-67. (https://dorl.net/dor/20.1001.1.23223871.1390.2.7.7.5).
  58. Barati, H., Saki, R. and Mortazavi, S., "Intelligent control of UPFC for enhancing transient stability on multi-machine power systems", Journal of Intelligent Procedures in Electrical Technology, Vol. 1, (2010), 3-12. (https://dorl.net/dor/20.1001.1.23223871.1389.1.1.1.0).
  59. Shahgholian, Gh., Hamidpour, H. and Movahedi, A., "Transient stability promotion by FACTS controller based on adaptive inertia weight particle swarm optimization method", Advances in Electrical and Electronic Engineering, Vol. 16, (2018), 57-70, (https://doi.org/10.15598/aeee.v16i1.2369).
  60. Shahgholian, Gh. and Faiz, J., "Coordinated control of power system stabilizer and FACTS devices for dynamic performance enhancement- State of art", Proceedings of the IEEE/IEPS, Kyiv, Ukraine, (2016), 1-6. (https://doi.org/10.1109/IEPS.2016.7521865).
  61. Shahgholian, Gh. and Movahedi, A., "Coordinated control of TCSC and SVC for system stability enhancement using ANFIS method", International Review on Modelling and Simulations, Vol. 4, No. 5, (2011). (https://www.researchgate.net/publication/286221971_Coordinated_control_of_TCSC_and_SVC_for_system_stability_enhancement_using_ANFIS_method).
  62. Peddakapu, K., Mohamed, M.R., Sulaiman, M.H., Srinivasarao, P., Veerendra, A.S. and Leung, P.K., "Performance analysis of distributed power flow controller with ultra-capacitor for regulating the frequency deviations in restructured power system", Journal of Energy Storage, Vol. 31, (2020), 101676. (https://doi.org/10.1016/j.est.2020.101676).
  63. Shahgholian, Gh., Mahdavian, M., Noorani Kalteh, M. and Janghorbani, M., "Design of a new IPFC-based damping neurocontrol for enhancing stability of a power system using particle swarm optimization", International Journal of Smart Electrical Engineering, Vol. 3, (2014), 73-78. (https://dorl.net/dor/20.1001.1.22519246.2014.03.02.2.4).
  64. Faiz, J., Shahgholian, Gh. and Torabiyan, M., "Design and simulation of UPFC for enhancement of power quality in transmission lines", Proceedings of the IEEE/POWERCON, Vol. 1, Zhejiang, China, (2010), 1-5. (http://dx.doi.org/10.1109/POWERCON.2010.5666588).
  65. Shahgholian, Gh., Eshtehardiha, S., Mahdavinasab, H. and Yousefi, M.R., "A novel approach in automatic control based on the genetic algorithm in STATCOM for improvement power system transient stability", Proceedings of the IEEE/ICIS, Vol. 1, Varna, (2008), 14-19. (https://doi.org/10.1109/IS.2008.4670419).
  66. Jafari, E., Marjanian, A., Silaymani, S. and Shahgholian, Gh., "Designing an emotional intelligent controller for IPFC to improve the transient stability based on energy function", Journal of Electrical Engineering and Technology, Vol. 8, (2013), 478-489. (https://doi.org/10.5370/JEET.2013.8.3.478).
  67. Shahgholian, Gh., Mardani, E., Mahdavian, M., Janghorbani, M., Azadeh, M. and Farazpey, S., "Impact of PSS and STATCOM on dynamic parameters of power system based on neuro-fuzzy controllers", Proceedings of the IEEE/ECTICON, Chiang Mai, Thailand, (2016), 1-4. (https://doi.org/10.1109/ECTICon.2016.7561243).
  68. Li, B., Xiao, G., Lu, R., Deng, R. and Bao, H., "On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices", IEEE Transactions on Industrial Informatics, Vol. 16, (2020), 854-864. (http://dx.doi.org/10.1109/TII.2019.2922215).
  69. Shahgholian, Gh., Faiz, J., Fani, B. and Yousefi, M.R., "Operation, modeling, control and applications of static synchronous compensator: A review", Proceedings of the IEEE/IPEC, Vol. 1, Singapore, (2010), 596-601. (http://dx.doi.org/10.1109/IPECON.2010.5697064).
  70. Ning, G., He, S., Wang, Y., Yao, L. and Wang, Z., "A novel distributed flexible ac transmission system controller based on active variable inductance (AVI)", Proceedings of the IEEE/PESC, Vol. 1, Jeju, South Korea, (2006), 1-4. (http://dx.doi.org/10.1109/pesc.2006.1711970).
  71. Bruno, S., Carne, G.D. and Scala, M.L., "Distributed FACTS for power system transient stability control", Energies, Vol. 13, 1-16. (http://dx.doi.org/10.3390/en13112901).
  72. Abdelsalam, A.A., Gabbar, H.A. and Sharaf, A.M., "Performance enhancement of hybrid AC/DC microgrid based D-FACTS", Electrical Power and Energy Systems, Vol. 63, (2014), 382-393. (https://doi.org/10.1016/j.ijepes.2014.06.003).
  73. Shahgholian, Gh., Fani, B., Keyvani, B., Karimi, H. and Moazzami, M., "Improve the reactive power sharing by uses to modify droop characteristics in autonomous microgrids", Energy Engineering and Management, Vol. 9, (2019), 64-71. (https://energy.kashanu.ac.ir/index.php?slc_lang=en&sid=1).
  74. Fayazi, H., Moazzami, M., Fani, B. and Shahgholian, Gh., "A first swing stability improvement approach in microgrids with synchronous distributed generators", International Transactions on Electrical Energy Systems, Vol. 31, (2021), e12816. (http://dx.doi.org/10.1002/2050-7038.12816).
  75. Shahgholian, Gh., "A brief review on microgrids: Operation, applications, modeling, and control", International Transactions on Electrical Energy Systems, Vol. 31, (2021), e12885. (https://doi.org/10.1002/2050-7038.12885).
  76. Keyvani-Boroujeni, B., Shahgholian, Gh. and Fani, B., "A distributed secondary control approach for inverter-dominated microgrids with application to avoiding bifurcation-triggered instabilities", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, (2020), 3361-3371. (http://dx.doi.org/10.1109/JESTPE.2020.2974756).
  77. Shafiee, Q., Nasirian, V., Vasquez, J.C., Guerrero, J.M. and Davoudi, A., "A multi-functional fully distributed control framework for ac microgrids", IEEE Transactions on Smart Grid, Vol. 9, No. 4, (2018), 3247-3258. (http://dx.doi.org/10.1109/TSG.2016.2628785).
  78. Wang, Z., Liu, F., Chen, Y., Low, S.H. and Mei, S., "Unified distributed control of stand-alone dc microgrids", IEEE Transactions on Smart Grid, Vol. 10, No. 1, (2019), 1013-1024. (http://dx.doi.org/10.1109/TSG.2017.2757498).
  79. Ahmadi, R. and Ferdowsi, M., "Improving the performance of a line regulating converter in a converter-dominated DC microgrid system", IEEE Transactions on Smart Grid, Vol. 5, (2014), 2553-2563. (http://dx.doi.org/10.1109/TSG.2014.2319267).
  80. Wang, J., Jin, C. and Wang, P., "A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids", IEEE Transactions on Industrial Electronics, Vol. 65, (2018), 6188-6197. (http://dx.doi.org/ 10.1109/TIE.2017.2784349).
  81. Aprilia, E., Meng, K., Hosani, M.A., Zeineldin, H.H. and Dong, Z.Y., "Unified power flow algorithm for standalone ac/dc hybrid microgrids", IEEE Transactions on Smart Grid, Vol. 10, (2019), 639-649. (http://dx.doi.org/10.1109/TSG.2017.2749435).
  82. Kamali, M., Fani, B., Shahgholian, Gh., Gharehpetian, G.B. and Shafiee, M., "Harmonic compensation and micro-grid voltage and frequency control based on power proportional distribution with adaptive virtual impedance method", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, (2023), 33-60. (http://jipet.iaun.ac.ir/article_688614.html?lang=en).
  83. Karimi, H., Shahgholian, Gh., Fani, B., Sadeghkhani, I. and Moazzami, M., "A protection strategy for inverter interfaced islanded microgrids with looped configuration", Electrical Engineering, Vol. 101, No. 3, (2019), 1059-1073. (https://doi.org/10.1007/s00202-019-00841-6).
  84. Xiao, Z., Wu, J. and Jenkins, N., "An overview of microgrid control", Journal Intelligent Automation and Soft Computing, Vol. 16, (2010), 199-212. (https://portal.arid.my/Publications/fbedd8d3-ea1b-48.pdf).
  85. Shuai, Z., Sun, Y., Shen, Z.J., Tian, W., Tu, C., Li, Y. and Yin, X., "Microgrid stability: Classification and a review", Renewable and Sustainable Energy Reviews, Vol. 58, (2016), 167-179. (https://doi.org/10.1016/j.rser.2015.12.201).
  86. Sadegheian, M., Fani, B., Sadeghkhani, I. and Shahgholian, Gh., "A local power control scheme for electronically interfaced distributed generators in islanded microgrids", Iranian Electric Industry Journal of Quality and Productivity, Vol. 8, No. 3, (2020), 47-58. (http://dx.doi.org/10.29252/ieijqp.8.3.47).
  87. Xu, Y., Xiao, X., Sun, Y. and Long, Y., "Voltage sag compensation strategy for unified power quality conditioner with simultaneous reactive power injection", Journal of Modern Power Systems and Clean Energy, Vol. 4, (2016), 113-122. (http://dx.doi.org/10.1007/s40565-016-0183-x).
  88. Campanhol, L.B.G., da Silva, S.A.O., de Oliveira, A.A. and Bacon, V.D., "Power flow and stability analyses of a multifunctional distributed generation system integrating a photovoltaic system with unified power quality conditioner", IEEE Transactions on Power Electronics, Vol. 34, (2019), 6241-6256. (https://doi.org/10.1109/TPEL.2018.2873503).
  89. Naidu, R.P.K. and Meikandasivam, S., "Power quality enhancement in a grid-connected hybrid system with coordinated PQ theory & fractional order PID controller in DPFC", Sustainable Energy, Grids and Networks, Vol. 21, (2020), 100317. (http://dx.doi.org/10.1016/j.segan.2020.100317).
  90. Hossam-Eldin, A.A., Abdallah, E.N., Elgamal, M.S. and Aboras, K.M., "Fault ride-through of grid-connected THIPWM fired DCMLI-based DFIG using parallel switched feedback-controlled DVR", IET Generation, Transmission and Distribution, Vol. 14, (2020), 945-954. (http://dx.doi.org/10.1049/iet-gtd.2019.0215).
  91. Mansoor, M., Mariun, N., Toudeshki, A., Wahab, N.I.A. and Hojabri, M., "Innovating problem solving in power quality devices: A survey based on dynamic voltage restorer case (DVR)", Renewable and Sustainable Energy Reviews, (2017). (http://dx.doi.org/10.1016/j.rser.2016.12.022).
  92. Dorostkar-Ghamsari, M., Fotuhi-Firuzabad, M. and Aminifar, F., "Probabilistic worth assessment of distributed static series compensators", IEEE Transactions on Power Delivery, Vol. 26, (2011), 1734-1743. (https://doi.org/10.1109/TPWRD.2011.2127497).
  93. Amini, A. and Kargar, A., "Reduction of sub-synchronous resonances with D-FACTS devices using intelligent control", Journal of Intelligent Procedures in Electrical Technology, Vol. 7, (2016), 3-14. (https://jipet.iaun.iau.ir/article_561188.html?lang=en).
  94. Singh, B., Arya, S.R. and Jain, C., "Simple peak detection control algorithm of distribution static compensator for power quality improvement", IET Power Electronics, Vol. 7, No. 7, (2014), 1736-1746. (http://dx.doi.org/10.1049/iet-pel.2013.0494).
  95. Mahdavian, M. and Shahgholian, Gh., "State space analysis of power system stability enhancement with used the STATCOM", Proceedings of the IEEE/ECTI, Vol. 1, Chiang Mai, Thailand, (2010), 1201-1205. (https://ieeexplore.ieee.org/document/5491668).
  96. Noori, A., Zhang, Y., Nouri, N. and M. Hajivand, "Hybrid allocation of capacitor and distributed static compensator in radial distribution networks using multi-objective improved golden ratio optimization based on fuzzy decision making", IEEE Access, Vol. 8, (2020), 162180-162195. (https://doi.org/10.1109/ACCESS.2020.2993693).
  97. Gayatri, M.T.L., Parimi, A.M. and Kumar, A.V.P., "Microgrid reactive power compensation using UPQC with common DC link energy restored by PV array", Proceedings of the IEEE/ICETETS, Pudukkottai, India, (2016), 1-8 (http://dx.doi.org/10.1109/ICETETS.2016.7603079).
  98. Gowrishankar, A. and Ramasamy, M., "SPV-based UPQC with modified power angle control scheme for the enhancement of power quality", Journal of Circuits, Systems and Computers, Vol. 29, No. 04, Article No. 2050064, (2020). (https://doi.org/10.1142/S0218126620500644).
  99. Khadkikar, V. and Chandra, A., "A new control philosophy for a unified power quality conditioner (UPQC) to coordinate load-reactive power demand between shunt and series inverters", IEEE Transactions on Power Delivery, Vol. 23, (2008), 2522-2534. (http://dx.doi.org/10.1109/TPWRD.2008.921146).
  100. Rajarajan, R. and Prakash, R., "A reformed adaptive frequency passiveness control for unified power quality compensator with model parameter ability to improve power quality", Microprocessors and Microsystems, Vol. 73, (2020), 102984. (http://dx.doi.org/10.1016/j.micpro.2019.102984).
  101. Lee, W.C., Lee, D.M. and Lee, T.K., "New control scheme for a unified power-quality compensator-q with minimum active power injection", IEEE Transactions on Power Delivery, Vol. 25, (2010), 1068-1076. (http://dx.doi.org/ 10.1109/TPWRD.2009.2031556).
  102. Dash, S.K. and Ray, P.K., "Power quality improvement utilizing PV fed unified power quality conditioner based on UV-PI and PR-R controller", CPSS Transactions on Power Electronics and Applications, Vol. 3, (2018), 243-253. (http://dx.doi.org/ 10.24295/CPSSTPEA.2018.00024).
  103. Sebastian, P. and Nair, U., "Improved low voltage ride through capability of a fixed speed wind generator using dynamic voltage restorer", Procedia Technology, Vol. 25, (2016), 767-774. (http://dx.doi.org/10.1016/j.protcy.2016.08.171).
  104. Hassanein, W.S., Ahmed, M.M., Raouf, M.O., Ashmawy, M.G. and Mosaad, M.I., "Performance improvement of off-grid hybrid renewable energy system using dynamic voltage restorer", Alexandria Engineering Journal, Vol. 59, No. 3, (2020), 1567-1581. (http://dx.doi.org/10.1016/j.aej.2020.03.037).
  105. Jerin, A.R.A., Palanisamy, K., Umashankar, S. and Thirumoorthy, A.D., "Power quality improvement of grid connected wind farms through voltage restoration using dynamic voltage restorer", International Journal of Renewable Energy Research, Vol. 6, (2016), 53-60. (https://doi.org/10.20508/ijrer.v6i1.3070.g6759).
  106. Tu, C., Guo, Q., Jiang, F., Chen, C., Li, X., Xiao, F. and Gao, J., "Dynamic voltage restorer with an improved strategy to voltage sag compensation and energy self-recovery", CPSS Transactions on Power Electronics and Applications, Vol. 4, (2019), 219-229 (http://dx.doi.org/10.24295/CPSSTPEA.2019.00021).
  107. Rauf, A.M. and Khadkikar, V., "An enhanced voltage sag compensation scheme for dynamic voltage restorer", IEEE Transactions on Industrial Electronics, Vol. 62, (2015), 2683-2692. (http://dx.doi.org/10.1109/TIE.2014.2362096).
  108. Torres, A.P., Roncero-Sánchez, P., Vázquez, J., López-Alcolea, F.J. and Molina-Martínez, E.J., "A discrete-time control method for fast transient voltage-sag compensation in DVR", IEEE Access, Vol. 7, (2019), 564-577. (http://dx.doi.org/10.1109/ACCESS.2019.2955177).
  109. Sitharthan, R., Sundarabalan, C.K., Devabalaji, K.R., Nataraj, S.K. and Karthikeyan, M., "Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer", Sustainable Cities and Society, Vol. 39, (2018), 114-125. (http://dx.doi.org/10.1016/j.scs.2018.02.008).
  110. Brissette, A., Maksimović, D. and Levron, Y., "Distributed series static compensator deployment using a linearized transmission system model", IEEE Transactions on Power Delivery, Vol. 30, (2015), 1269-1277. (http://dx.doi.org/10.1109/TPWRD.2014.2362764).
  111. Gaigowal, S.R. and Renge, M.M., "DSSC: A distributed power flow controller", Energy Procedia, Vol. 117, (2017), 745-752. (http://dx.doi.org/10.1016/j.egypro.2017.05.190).
  112. Khazaie, J., Mokhtari, M., Khalilyan, M. and Nazarpour, D., "Sub-synchronous resonance damping using distributed static series compensator (DSSC) enhanced with fuzzy logic controller", International Journal of Electrical Power and Energy Systems, Vol. 43, (2012), 80-89. (http://dx.doi.org/10.1016/j.ijepes.2012.05.009).
  113. Pashaie, A., Zahawi, B. and Giaouris, D., "Distributed static series compensation for distribution network line voltage profile improvement", Proceedings of the IEEE/PES, Vol. 1, Manchester, UK, (2011), 1-4. (http://dx.doi.org/10.1109/ISGTEurope.2011.6162823).
  114. Dorostkar-Ghamsari, M., Fotuhi-Firuzabad, M., Aminifar, F., Safdarian, A. and Lehtonen, M., "Optimal distributed static series compensator placement for enhancing power system loadability and reliability", IET Generation, Transmission and Distribution, Vol. 9, (2015), 1043-1050. (http://dx.doi.org/10.1049/iet-gtd.2014.0958).
  115. Divan, D.M., Brumsickle, W.E., Schneider, R.S., Kranz, B., Gascoigne, R.W., Bradshaw, D.T., Ingram, M.R. and Grant, I.S., "A distributed static series compensator system for realizing active power flow control on existing power lines", IEEE Transactions on Power Delivery, Vol. 22, (2007), 642-649. (http://dx.doi.org/10.1109/TPWRD.2006.887103).
  116. Divan, D. and Johal, H., "Distributed FACTS- A new concept for realizing grid power flow control", IEEE Transactions on Power Electronics, Vol. 22, (2007), 2253-2260. (http://dx.doi.org/10.1109/TPEL.2007.909252).
  117. Shahgholian, Gh., Mahdavian, M., Janghorbani, M., Eshaghpour, I. and Ganji, E., "Analysis and simulation of UPFC in electrical power system for power flow control", Proceedings of the IEEE/ECTICON, Vol. 1, Phuket, Thailand, (2017), 62-65. (https://doi.org/10.1109/ECTICon.2017.8096173).
  118. Yuan, Z., Haan, S.W.H., Ferreira, J.B. and Cvoric, D., "A FACTS device: Distributed power-flow controller (DPFC)", IEEE Transactions on Power Electronics, Vol. 25, (2010), 2564-2572. (http://dx.doi.org/10.1109/TPEL.2010.2050494).
  119. Safari, A., Soulat, B. and Ajami, A., "Modeling and unified tuning of distributed power flow controller for damping of power system oscillations", Ain Shams Engineering Journal, Vol. 4, (2013), 775-782. (http://dx.doi.org/10.1016/j.asej.2013.02.003).
  120. Tang, A., Shao, Y., Xu, Q., Zheng, X., Zhao, H. and Xu, D., "Multi-objective coordination control of distributed power flow controller", CSEE Journal of Power and Energy Systems, Vol. 5, (2019), 348-354. (http://dx.doi.org/10.17775/CSEEJPES.2018.01450).
  121. Dai, J., Tang, Y., Liu, Y., Ning, J., Wang, Q., Zhu, N. and Zhao, J., "Optimal configuration of distributed power flow controller to enhance system loadability via mixed integer linear programming", Journal of Modern Power Systems and Clean Energy, Vol. 7, (2019), 1484-1494. (http://dx.doi.org/10.1007/s40565-019-0568-8).
  122. Shahgholian, Gh., Haghjoo, E., Seifi, A. and Hassanzadeh, I., "The improvement DSTATCOM to enhance the quality of power using fuzzy-neural controller", Journal of Intelligent Procedures in Electrical Technology, Vol. 2, (2011), 3-16. (https://jipet.iaun.iau.ir/article_550725.html?lang=en).
  123. Shahgholian, Gh. and Azimi, Z., "Analysis and design of a DSTATCOM based on sliding mode control strategy for improvement of voltage sag in distribution systems", Electronics, Vol. 5, No. 3, (2016), 1-12. (http://dx.doi.org/10.3390/electronIcs 5030041).
  124. Patel, N., Gupta, N. and Babu, B.C., "Photovoltaic system operation as DSTATCOM for power quality improvement employing active current control", IET Generation, Transmission and Distribution, Vol. 14,  No. 17, (2020), 3518-3529. (http://dx.doi.org/10.1049/iet-gtd.2019.1487).
  125. Iqbal, F., Khan, M.T. and Siddiqui, A.S., "Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement", Alexandria Engineering Journal, Vol. 57, No. 2, (2018), 755-765. (http://dx.doi.org/10.1016/j.aej.2017.03.002).
  126. Eswaran, T. and Kumar, V.S., "Particle swarm optimization (PSO)-based tuning technique for PI controller for management of a distributed static synchronous compensator (DSTATCOM) for improved dynamic response and power quality", Journal of Applied Research and Technology, Vol. 15, No. 2, (2017), 173-189. (http://dx.doi.org/10.1016/j.jart.2017.01.011).
  127. Arya, S.R., Singh, B., Niwas, R., Chandra, A. and Al-Haddad, K., "Power quality enhancement using DSTATCOM in distributed power generation system", IEEE Transactions on Industry Applications, Vol. 52, No. 6, (2016), 5203-5212. (http://dx.doi.org/10.1109/TIA.2016.2600644).
  128. Tolabi, H.B., Hosseini, R. and Shakarami, M.R., "A robust hybrid fuzzy–simulated annealing–intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system", Journal Engineering Optimization, Vol. 48, (2016), 1-20. (https://doi.org/10.1080/0305215X.2015.1080579).
  129. Cairoli, P., Pan, Z., Tschida, C., Wang, Z., Ramanan, V.R., Raciti, L. and Antoniazzi, A., "Solid-state circuit breaker protection for dc shipboard power systems: breaker design, protection scheme, validation testing", IEEE Transactions on Industry Applications, Vol. 56,  No. 2, (2020), 952-960. (http://dx.doi.org/ 10.1109/TIA.2019.2962762).
  130. Li, B., He, J., Li, Y. and Li, R., "A novel solid-state circuit breaker with self-adapt fault current limiting capability for LVDC distribution network", IEEE Transactions on Power Electronics, Vol. 34, No. 4, (2019), 3516-3529. (http://dx.doi.org/ 10.1109/TPEL.2018.2850441).
  131. Liu, F., Liu, W., Zha, X., Yang, H. and Feng, K., "Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage dc microgrid", IEEE Transactions on Power Electronics, Vol. 32, No. 4, (2017), 3007-3021. (http://dx.doi.org/10.1109/TPEL.2016.2574751).
  132. Song, S., Kim, J., Choi, S., Kim, I. and Choi, S., "New simple-structured ac solid-state circuit breaker", IEEE Transactions on Industrial Electronics, Vol. 65, No. 11, (2018), 8455-8463. (http://dx.doi.org/10.1109/TIE.2018.2809674).
  133. Shen, Z.J., Sabui, G., Miao, Z. and Shuai, Z., "Wide-bandgap solid-state circuit breakers for dc power systems: Device and circuit considerations", IEEE Transactions on Electron Devices, Vol. 62, No. 2, (2015), 294-300. (http://dx.doi.org/10.1109/TED.2014.2384204).
  134. Li, W., Wang, Y., Wu, X. and Zhang, X., "A novel solid-state circuit breaker for on-board dc microgrid system", IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, (2019), 5715-5723. (http://dx.doi.org/10.1109/TIE.2018.2854559).
  135. Anselmo, I.S. and Rashid, M.H., "Solid-state circuit breakers for d.c. microgrid applications", Proceedings of the IEEE/ICECCE, Vol. 1, Istanbul, Turkey, (2020), 1-4. (https://doi.org/10.1109/ICECCE49384.2020.9179267).
  136. Nasereddine, R., Amor, I., Massoud, A. and Ben Brahim, L., "AC solid state circuit breakers for fault current limitation in distributed generation", Proceedings of the IEEE/GCC, Doha, Qatar, (2013). 446-449. (https://doi.org/10.1109/IEEEGCC.2013.6705820).
  137. Stumpe, M., Tünnerhoff, P., Dave, J., Schnettler, A., Ergin, D., Schön, A., Würflinger, K. and Schettler, F., "DC fault protection for modular multi-level converter-based HVDC multi-terminal systems with solid state circuit breakers", IET Generation, Transmission and Distribution, Vol. 12, No. 12, (2018), 3013-3020. (https://doi.org/10.1049/iet-gtd.2017.1322).
  138. Milojković, J., Litovski, V. and Blond, S.L., "Low-voltage circuit breakers based on WBG solid-state devices", Journal of Circuits, Systems and Computers, Vol. 27, (2018), 1850020. (https://doi.org/10.1142/S0218126618500202).
  139. Rogers, K.M. and Overbye, T.J., "Some applications of distributed flexible ac transmission system (D-FACTS) devices in power systems", Proceedings of the IEEE/NAPS, Vol. 1, Calgary, AB, Canada, (2008), 1-8. (http://dx.doi.org/10.1109/NAPS.2008.5307314).
  140. Chawda,G.S., Shaik,A.G., Mahela,O.P., Padmanaban, S. and Holm-Nielsen, J.B., "Comprehensive review of distributed FACTS control algorithms for power quality enhancement in utility grid with renewable energy penetration", IEEE Access, Vol. 8, (2020), 107614-107634. (http://dx.doi.org/10.1109/ACCESS.2020.3000931).
  141. Sirjani, R. and Jordehi, A.R., "Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review", Renewable and Sustainable Energy Reviews, Vol. 77, (2017), 688-694. (http://dx.doi.org/10.1016/j.rser.2017.04.035).
  142. Gambôa, P., Silva, J.F., Pinto, S.F. and Margato, E., "Input–output linearization and PI controllers for ac–ac matrix converter based dynamic voltage restorers with Flywheel Energy Storage: a comparison", Electric Power Systems Research, Vol. 169, (2019), 214-228. (http://dx.doi.org/10.1016/j.epsr.2018.12.023).
  143. Rodrigues, R., Du, Y., Antoniazzi, A. and Cairoli, P., "A review of solid-state circuit breakers", IEEE Transactions on Power Electronics, Vol. 36, (2021), 364-377. (http://dx.doi.org/10.1109/TPEL.2020.3003358).
  144. Li, P., Li, Y. and Yin, Z., "Realization of UPQC H coordinated control in microgrid", International Journal of Electrical Power and Energy Systems, Vol. 65, (2015), 443-452. (http://dx.doi.org/10.1016/j.ijepes.2014.10.032).
  145. Khadem, S.K., Basu, M. and Conlon, M.F., "Intelligent islanding and seamless reconnection technique for microgrid with UPQC", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, (2015), 483-492. (http://dx.doi.org/10.1109/JESTPE.2014.2326983).
  146. Gayatri, M.T.L., Parimi, A.M. and Kumar, A.V.P., "Utilization of unified power quality conditioner for voltage sag/swell mitigation in microgrid", Proceedings of the IEEE/PESTSE, Vol. 1, Bangalore, India, (2016), 1-6. (http://dx.doi.org/10.1109/PESTSE.2016.7516475).
  147. Li, Z., Li, W. and Pan, T., "An optimized compensation strategy of DVR for micro-grid voltage sag", Protection and Control of Modern Power Systems, Vol. 1, (2016), 1-8. (http://dx.doi.org/10.1186/s41601-016-0018-9).
  148. Wang, B., Ye, J., Manandhar, U., Ukil, A. and Gooi, H.B., "A DC microgrid integrated dynamic voltage restorer with model predictive control", Proceedings of the IEEE/ACEPT, Vol. 1, Singapore, (2017), 1-5. (http://dx.doi.org/10.1109/ACEPT.2017.8168554).
  149. Gayatri, M.T.L., Parimi, A.M. and Kumar, A.V.P., "Application of dynamic voltage restorer in microgrid for voltage sag/swell mitigation", Proceedings of the IEEE/PCITC, Vol. 1, Bhubaneswar, India, (2015), 750-755. (http://dx.doi.org/10.1109/PCITC.2015.7438096).
  150. Yuvaraj, T., Ravi, K. and Devabalaji, R., "DSTATCOM allocation in distribution networks considering load variations using bat algorithm", Ain Shams Engineering Journal, Vol. 8, (2017), 391-403. (http://dx.doi.org/ 10.1016/j.asej.2015.08.006).
  151. Mali, S., James, S. and Tank, I., "Improving low voltage ride-through capabilities for grid connected wind turbine generator", Energy Procedia, Vol. 54, (2014), 530-540. (http://dx.doi.org/10.1016/j.egypro.2014.07.294).
  152. Jayawardena, A.V., Meegahapola, L.G., Robinson, D.A. and Perera, S., "Low-voltage ride-through characteristics of microgrids with distribution static synchronous compensator (DSTATCOM)", Proceedings of the IEEE/AUPEC, Vol. 1, Wollongong, NSW, Australia, (2015), 1-6. (http://dx.doi.org/10.1109/AUPEC.2015.7324823).
  153. Moghadasi, A., Sarwat, A. and Guerrero, J.M., "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators", Renewable and Sustainable Energy Reviews, Vol. 55, (2016), 823-839. (http://dx.doi.org/10.1016/j.rser.2015.11.020).
  154. Omar, R. and Rahim, N.A., "Power quality improvement in low voltage distribution system using dynamic voltage restorer (DVR)", Proceedings of the IEEE/Taichung, Vol. 1, Taichung, Taiwan, (2010), 973-978. (http://dx.doi.org/10.1109/ICIEA.2010.5515734).
  155. Benali, A., Khiat, M., Allaoui, T. and Denaï, M., "Power quality improvement and low voltage ride through capability in hybrid wind-pv farms grid-connected using dynamic voltage restorer", IEEE Access, Vol. 6, (2018), 68634-68648. (http://dx.doi.org/10.1109/ACCESS.2018.2878493).
  156. Chen, L., Chen, H., Yang, J., Zhu, L., Tang, Y., Koh, L.H., Xu, Y., Zhang, C., Liao, Y. and Ren, L., "Comparison of superconducting fault current limiter and dynamic voltage restorer for LVRT improvement of high penetration microgrid", IEEE Transactions on Applied Superconductivity, Vol. 27, (2017), 1-7. (http://dx.doi.org/10.1109/T­ASC.20­17.2656624).
  157. Prabaakaran, K., Chitra, N. and Kumar, A.S., "Power quality enhancement in microgrid- A survey", Proceedings of the IEEE/ICCPCT, Nagercoil, India, (2013), 126-131. (https://doi.org/10.1109/ICCPCT.2013.6528830).
  158. Kumar, A.S., Rajasekar, S. and Ajay-D-VimalRaj, P., "Power quality profile enhancement of utility connected microgrid system using ANFIS-UPQC", Procedia Technology, Vol. 21, (2015), 112-119. (http://dx.doi.org/10.1016/j.protcy.2015.10.017).
  159. Gandhar, S., Ohri, J. and Singh, M., "Dynamic reactive power optimization of hybrid micro grid in islanded mode using fuzzy tuned UPFC", Journal of Information and Optimization Sciences, Vol. 41, (2020), 305-315. (http://dx.doi.org/10.1080/02522667.2020.1721620).
  160. Bagheri, M., Nurmanova, V., Abedinia, O. and Naderi,M.S., "Enhancing power quality in microgrids with a new online control strategy for DSTATCOM using reinforcement learning algorithm", IEEE Access, Vol. 6, (2018), 38986-38996. (http://dx.doi.org/10.1109/ACCESS.2018.2852941).
  161. Benachaiba, C., Haidar, A.M.A., Habab, M. and Abdelkhalek, O., "Smart control of UPCQ within microgrid energy system", Energy Procedia, Vol. 6, (2011), 503-512. (http://dx.doi.org/10.1016/j.egypro.2011.05.058).
  162. Harshitha, M.R., Sharmila, R.S., Shivasharanappa, G.C. and Prakash, R., "UPQC with islanding and grid connection for microgrid applications", International Journal of Scientific and Research Publications, Vol. 6, (2016), 214-220. (https://journals.pen2print.org/index.php/ijr/article/view/5691).
  163. El-Raouf, M.O.A. Mosaad, M.I., Al-Ahmar, M.A., Mallawany, A.L. and El-Bendary, F.M. , "Optimal PI controller of DVR to enhance the performance of hybrid power system feeding a remote area in Egypt", Sustainable Cities and Society, Vol. 47, (2019), 101469. (https://doi.org/10.1016/j.scs.2019.101469).
  164. Gludpetch, S. and Tayjasanant, T., "Optimal placement of protective devices for improving reliability indices in microgrid system", Proceedings of the IEEE/APPEEC, Kowloon, China, (2013), 1-6. (https://doi.org/10.1109/APPEEC.2013.6837303).
  165. Syed, I. and Khadkikar, V., "A dynamic voltage restorer (DVR) based interface scheme for microgrids", Proceedings of the IEEE/IECON, Dallas, TX, USA, (2014), 5143-5149. (http://dx.doi.org/10.1109/IECON.2014. 7049283).
  166. Wang, Y., Li, W., Wu, X. and Wu, X., "A novel bidirectional solid-state circuit breaker for dc microgrid", IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, (2019), 5707-5714. (http://dx.doi.org/10.1109/TIE.2018.2878191).
  167. Ramli, M.A.M. and Bouchekara, H.R.E.H., "Solving the problem of large-scale optimal scheduling of distributed energy resources in smart grids using an improved variable neighborhood search", IEEE Access, Vol. 8, (2020), 77321-77335. (https://doi.org/10.1109/ACCESS.2020.2986895).
  168. Bai, W., Eke, I. and Lee, K.Y., "Optimal scheduling of distributed energy resources by modern heuristic optimization technique", Proceedings of the IEEE/ISAP, San Antonio, TX, USA, (2017), 1-6. (https://doi.org/10.1109/ISAP.2017.8071407).
  169. Jirdehi, M.A., Tabar, V.S., Hemmati, R. and Siano, P., "Multi objective stochastic microgrid scheduling incorporating dynamic voltage restorer", International Journal of Electrical Power and Energy Systems, Vol. 93, (2017), 316-327. (http://dx.doi.org/10.1016/j.ijepes.2017.06.010).
  170. Hamidi, A., Golshannavaz, S. and Nazarpour, D., "D-FACTS cooperation in renewable integrated microgrids: A linear multiobjective approach", IEEE Transactions on Sustainable Energy, Vol. 10, No. 1, (2019), 355-363. (http://dx.doi.org/10.1109/TSTE.2017.2723163).
  171. Hossain, M.A., Pota, H.R., Hossain, M.J. and Blaabjerg, F., "Evolution of microgrids with converter-interfaced generations: challenges and opportunities", International Journal of Electrical Power and Energy Systems, Vol. 109, (2019), 160-186. (https://doi.org/10.1016/j.ijepes.2019.01.038).
  172. Majumder, R., "Some aspects of stability in microgrids", IEEE Transactions on Power Systems, Vol. 28, No. 3, (2013), 3243-3252. (https://doi.org/10.1109/TPWRS.2012.2234146).
  173. Tang, X., Deng, W. and Qi, Z., "Investigation of the dynamic stability of microgrid", IEEE Transactions on Power Systems, Vol. 29, No. 2, (2014), 698-706. (http://dx.doi.org/10.1109/TPWRS.2013.2285585)
  174. Shahgholian, Gh., Dehghani, M. and Behzadfar, N., "The effect of STATCOM controller for improving dynamic performance of wind farm in power system", International Journal Natural and Engineering Sciences, Vol. 4, No. 2, (2020), 1-20. (https://www.ijnes.org/index.php/ijnes/article/view/577).
  175. Choudhury, S., Bhowmik, P. and Rout, P.K., "Economic load sharing in a D-STATCOM integrated islanded microgrid based on fuzzy logic and seeker optimization approach", Sustainable Cities and Society, Vol. 37, (2018), 57-69. (http://dx.doi.org/10.1016/j.scs.2017.11.004).
  176. Rahmani, M., Faghihi, F., Moradi CheshmehBeigi, H. and Hosseini, S.M., "Frequency control of islanded microgrids based on fuzzy cooperative and influence of STATCOM on frequency of microgrids", Journal of Renewable Energy and Environment (JREE), Vol. 5, No. 4, (2018), 27-33. (http://dx.doi.org/10.30501/jree.2018.94119).
  177. Gandhar, S., Ohri, J. and Singh, M., "Improvement of voltage stability of renewable energy sources-based microgrid using ANFIS-tuned UPFC", Advances in Energy and Built Environment, Vol 36, (2020), 133-143. (http://dx.doi.org/10.1007/978-981-13-7557-6_11).
  178. Lee, T., Hu, S. and Chan, Y., "Design of D-STATCOM for voltage regulation in microgrids", Proceedings of the IEEE/PCCE, Atlanta, GA, USA, (2010), 3456-3463. (http://dx.doi.org/10.1109/ECCE.2010.5618339).
  179. Munasib, S. and Balda, J.C., "Short-circuit protection for low-voltage DC microgrids based on solid-state circuit breakers", Proceedings of the IEEE/PEDG, Vol. 1, Vancouver, BC, Canada, (2016), 1-7. (https://doi.org/10.1109/PEDG.2016.7527062).
  180. Liu, W., Liu, F., Zha, X., Huang, M., Chen, C. and Zhuang, Y., "An improved SSCB combining fault interruption and fault location functions for dc line short-circuit fault protection", IEEE Transactions on Power Delivery, Vol. 34, No. 3, (2019), 858-868. (http://dx.doi.org/10.1109/TPWRD.2018.2882497).
  181. Almutairy, I., "Solid state circuit breaker protection devices for DC microgrid in review", Proceedings of the IEEE/ICEDSA, Vol. 1, Ras Al Khaimah, United Arab Emirates, (2016), 1-3. (https://doi.org/10.1109/ICEDSA.2016.7818478).
  182. Urquizo, J., Singh, P., Kondrath, N., Hidalgo-León, R. and Soriano, G., "Using D-FACTS in microgrids for power quality improvement: A review", Proceedings of the IEEE/ETCM, Vol. 1, Salinas, Ecuador, (2017), 1-6. (http://dx.doi.org/10.1109/ETCM.2017.8247546).
  183. Wang, J., Wang, Z., Xu, L. and Wang, Z., "A summary of applications of D-FACTS on microgrid", Proceedings of the IEEE/APPEEC, Vol. 1, Shanghai, China, (2012), 1-6. (http://dx.doi.org/10.1109/APPEEC.2012.6307225).
  184. Gayatri, M.T.L., Parimi, A.M. and Kumar, A.V.P., "A review of reactive power compensation techniques in microgrids", Renewable and Sustainable Energy Reviews, Vol. 81, (2018), 1030-1036. (http://dx.doi.org/10.1016/j.rser.2017.08.006).