Document Type : Research Article

Authors

1 Department of Biorefinery, Faculty of New Technologies Engineering, Shahid BeheshtiUniversity, Tehran, Iran.

2 Alliance for Biomass and Sustainability Research – ABISURE, National University of Colombia, Campus Robledo, M3-214, Medellín, Colombia.

3 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 Department of Chemical and Materials Engineering, King Abudlaziz University, Rabigh, Suadia Arabia.

10.30501/jree.2022.353576.1415

Abstract

Furandicarboxylic acid (FDCA) is recognized as a valuable product of hydroxymethylfurfural (HMF) derived from cellulosic materials as an abundant renewable source. It could find future bioplastic application if a feasible separation process is developed. To find a commercially available solvent, FDCA should be selectively separated from HMF and the downstream process be supported by pyrolysis-gas chromatography-mass spectrometry experiments in line with density functional theory (DFT). Evaluation of the sigma potential and sigma surface analysis demonstrated that benzene and ethyl acetate enjoyed better extraction and HMF selectivity, whereas FDCA exhibited ideal behavior in the presence of DMF and DMSO solvents. It was proved that the hydrophobicity could be changed by improving the hydrogen-bonding interaction between them. Moreover, the up-down selection of classes of solvents based on the experimental data found by GC-MS revealed that polar molecular solvents (ethanol-water) were more compatible with carboxylic acids and alcohol compounds, while n-hexane was a desirable solvent for phenolic compounds. It was found that levoglucosan retained a significant fraction of water compared to other solvents, which need to be considered for further economic and environmental analysis under the multifaceted framework of biomass-derived products.

Keywords

Main Subjects

[1]   Geyer, R., Jambeck, J. R., Law, K.L., "Production, use, and fate of all plastics ever made", Science Advances, Vol. 3, No.7 (2017), (DOI: 10.1126/sciadv.1700782)
[2]   Perlack, R.D., Eaton, L.M., Turhollow, Jr-AF., Langholtz, M.H., Brandt, C,C., Downing, M.E, et al. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry" 2011.( https://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf)
[3]   Erickson, B., Winters, P., "Perspective on opportunities in industrial biotechnology in renewable chemicals". Biotechnol J, Vol. 7, (2012),176–185. (doi: 10.1002/biot.201100069)
[4]   Zheng, J., Suh, S., "Strategies to reduce the global carbon footprint of plastics", Nat Clim Chang. Vol.9, (2019), 374–378. (https://www.nature.com/articles/s41558-019-0459-z)
[5]   Stuart P.R., El-Halwagi M.M., "Integrated biorefineries: design, analysis, and optimization". CRC press; 2012. 873. (https://www.amazon.com/Integrated-Biorefineries-Optimization-Chemistry-Engineering/dp/1439803463)
[6]   Bilal, M., Vilar, DS., Eguiluz, KIB., Ferreira, LFR., Bhatt, P., Iqbal, HMN., "Biochemical conversion of lignocellulosic waste into renewable energy. Adv. Technol. Convers", Advanced Technology for Conversion of Waste into Renewable Energy, Vol. 1, (2021), 147–71.( https://doi.org/10.1016/B978-0-12-823139-5.00007-1)
[7]   Ghorbannezhad, P., Park, S., Onwudili, J.A., "Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products", Waste Management, (2020),102:909–18. (https://doi.org/10.1016/j.wasman.2019.12.006)
[8]   Dutta, S., Bhaumik, A., Wu, KC-W., "Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications", Energy&Environmental Science, Vol.7, (2014), 74–92. (https://doi.org/10.1039/C4EE01075B)
[9]   Searle, S., Malins, C., "A reassessment of global bioenergy potential in 2050", Gcb Bioenergy, Vol. 7, (2015), 328–336. (https://doi.org/10.1111/gcbb.12141)
 [10] Rosatella, A.A., Simeonov, S.P., Frade, RFM., Afonso, CAM., "5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications", Green Chem, Vol. 13, (2011), 754–93. (https://doi.org/10.1039/C0GC00401D)
[11] Kuster, B.F.M., "5‐Hydroxymethylfurfural (HMF). A review focussing on its manufacture", Starch, Vol. 42, (1990), 314–321. (https://doi.org/10.1002/star.19900420808)
[12] Davidson, M.G., Elgie, S., Parsons, S., Young, T.J.,  "Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies", Green Chem, Vol. 23, (2021), 3154-3171. (https://doi.org/10.1039/D1GC00721A)
[13] Arikan, E.B., Bouchareb, E.M., Bouchareb, R., Yağcı, N., Dizge, N., "Innovative Technologies Adopted for the Production of Bioplastics at Industrial Level", Bioplastics Sustain Dev., Springer; 2021, p. 83–102. (https://doi.org/10.1007/978-981-16-1823-9_3)
[14] Hwang, K-R., Jeon, W., Lee, S.Y., Kim, M-S., Park, Y-K., "Sustainable bioplastics: Recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF", Chemical Engineering Journal, Vol.390, (2020), 124636. (https://doi.org/10.1016/j.cej.2020.124636)
[15] Bonner, T.G., Bourne, E.J., Ruszkiewicz, M., "The iodine-catalysed conversion of sucrose into 5-hydroxy-methylfurfuraldehyde". Journal of Chemical Society, (1960),787–791.(https://doi.org/10.1039/JR9600000787)
[16] Motagamwala, A.H., Huang, K., Maravelias, C.T., Dumesic, J.A., "Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement", Energy&Environmental Science, Vol. 12, (2019), 2212–2222.(https://doi.org/10.1039/C9EE00447E)
[17] Hou, Q., Li, W., Zhen, M., Liu, L., Chen, Y., Yang, Q., Huang, F., Zhang, S., Ju, M., "An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations", RSC Advances, Vol. 7, (2017), 47288–47296. (https://doi.org/10.1039/C7RA10237B)
[18] Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I.G., Boopathy, R., "Conversion of Glucose to 5-Hydroxymethylfurfural, Levulinic Acid, and Formic Acid in 1, 3-Dibutyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazolium Iodide-Based Ionic Liquid", Applied Sciences, Vol. 11, (2021), 989. (DOI: 10.3390/app11030989)
[19] Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E., "THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass", Green Chemistry, Vol. 15, (2013), 3140–3145. (https://doi.org/10.1039/C3GC41214H)
[20] Bello Ould-Amer, S., Méndez Trelles, P., Rodil Rodríguez, E., Feijoo Costa, G., Moreira Vilar, M.T., "Towards improving the sustainability of bioplastics: Process modelling and life cycle assessment of two separation routes for 2, 5-furandicarboxylic acid", Seperation and Purification Technology, Vol. 23, (2020), 116056. (https://doi.org/10.1016/j.seppur.2019.116056)
[21] Zhang, Y., Guo, X., Tang, P., Xu, J., "Solubility of 2, 5-Furandicarboxylic Acid in Eight Pure Solvents and Two Binary Solvent Systems at 313.15–363.15 K", Journal of Chemical Engineering Data, Vol. 63, (2018), 1316–1324. (https://doi.org/10.1021/acs.jced.7b00927)
[22] Esteban, J., Vorholt, A.J., Leitner, W., "An overview of the biphasic ehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides", Green Chemistry, Vol. 22, (2020), 2097–2128. (https://doi.org/10.1039/C9GC04208C)
[23] Weingarten, R., Rodriguez‐Beuerman, A., Cao, F., Luterbacher, J.S., Alonso, D.M., Dumesic, J.A, Huber, G.W., "Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents"., ChemCatChem, Vol.6, (2014), 2229–2234. (https://doi.org/10.1002/cctc.201402299)
[24] Blumenthal, L.C., Jens, C.M., Ulbrich, J., Schwering, F., Langrehr, V., Turek, T., Kunz, U., Leonhard, K., Palkovits, R., "Systematic identification of solvents optimal for the extraction of 5-hydroxymethylfurfural from aqueous reactive solutions", ACS Sustainable Chem Eng, Vol. 4, (2016), 28–35. (https://doi.org/10.1021/acssuschemeng.5b01036)
[25] Klamt, A., "The COSMO and COSMO‐RS solvation models", WIREs Computational Molecular Science, Vol. 8, (2018); 699–709. (https://doi.org/10.1002/wcms.1338)
[26] Balchandani, S., Singh, R., "Thermodynamic analysis using COSMO-RS studies of reversible ionic liquid 3-aminopropyl triethoxysilane blended with amine activators for CO2 absorption", Journal of Molecular Liquids, Vol. 324, (2021), 114713. (https://doi.org/10.1016/j.molliq.2020.114713)
[27]  Eckert F, Klamt A. COSMOtherm, version 18.0. 0. Cosmol GmbH CoKG Leverkusen, Ger 2018.
[28] Momany, F., Schnupf U., "DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent COSMO" Computational Theoretical Chemistry, Vol. 1029, (2014), 57–67. (https://doi.org/10.1016/j.comptc.2013.12.007)
[29] Wang, Z., Bhattacharyya, S., Vlachos, D.G., "Solvent selection for biphasic extraction of 5-hydroxymethylfurfural via multiscale modeling and experiments", Green Chemistry, Vol. 22, (2020), 8699–8712. (https://doi.org/10.1039/D0GC03251D)
[30] Klamt, A., "Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena", J. Phys. Chem. Vol. 99, (1995) 2224–2235. (https://doi.org/10.1021/j100007a062)
[31] Klamt, A., "COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design", Elsevier: Amsterdam, The Netherlands, (2005). 246 pp. ISBN 0-444-51994-7. (https://www.sciencedirect.com/book/9780444519948/cosmo-rs#book-info)
[32] Forlemu, N., Watkins, P., Sloop, J., " Molecular Docking of Selective Binding Affinity of Sulfonamide Derivatives as Potential Antimalarial Agents Targeting the Glycolytic Enzymes: GAPDH, Aldolase and TPI", Open Journal of Biophysics, Vol. 7, (2017), 41-57. (http://dx.doi.org/10.4236/ojbiphy.2017.71004)
[33] Sosa, C., Andzelm, J., Elkin, B.C., Wimmer, E., Dobbs, K.D., Dixon, D.A., "A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds", J. Phys. Chem, Vol. 96, (1992), 6630–6636. (https://doi.org/10.1021/j100195a022)
[34] Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., "Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation", Canadian Journal of Chemistry, Vol. 70, (1992), 560–571. (https://doi.org/10.1139/v92-079)
[35] Klamt, A., Eckert, F., Reinisch, J., Wichmann K., "Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set", J. Comput. Aided. Mol. Des., Vol. 30, (2016), 959–967. (DOI: 10.1007/s10822-016-9927-y)
[36] Zhao X, Farajtabar A, Han G, Zhao H. Phenformin in aqueous co-solvent mixtures of N, N-dimethylformamide, ethanol, N-methylpyrrolidone and dimethyl sulfoxide: Solubility, solvent effect and preferential solvation. J Chem Thermodyn, Vol. 144, (2020), 106085. (doi.org/10.1016/j.jct.2020.106085)