[1] Geyer, R., Jambeck, J. R., Law, K.L., "Production, use, and fate of all plastics ever made", Science Advances, Vol. 3, No.7 (2017), (
DOI: 10.1126/sciadv.1700782)
[2] Perlack, R.D., Eaton, L.M., Turhollow, Jr-AF., Langholtz, M.H., Brandt, C,C., Downing, M.E, et al. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry" 2011.( https://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf)
[3] Erickson, B., Winters, P., "Perspective on opportunities in industrial biotechnology in renewable chemicals". Biotechnol J, Vol. 7, (2012),176–185. (doi: 10.1002/biot.201100069)
[4] Zheng, J., Suh, S., "Strategies to reduce the global carbon footprint of plastics", Nat Clim Chang. Vol.9, (2019), 374–378. (https://www.nature.com/articles/s41558-019-0459-z)
[5] Stuart P.R., El-Halwagi M.M., "Integrated biorefineries: design, analysis, and optimization". CRC press; 2012. 873. (https://www.amazon.com/Integrated-Biorefineries-Optimization-Chemistry-Engineering/dp/1439803463)
[6] Bilal, M., Vilar, DS., Eguiluz, KIB., Ferreira, LFR., Bhatt, P., Iqbal, HMN., "Biochemical conversion of lignocellulosic waste into renewable energy. Adv. Technol. Convers", Advanced Technology for Conversion of Waste into Renewable Energy, Vol. 1, (2021), 147–71.(
https://doi.org/10.1016/B978-0-12-823139-5.00007-1)
[7] Ghorbannezhad, P., Park, S., Onwudili, J.A., "Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products", Waste Management, (2020),102:909–18. (https://doi.org/10.1016/j.wasman.2019.12.006)
[8] Dutta, S., Bhaumik, A., Wu, KC-W., "Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications", Energy&Environmental Science, Vol.7, (2014), 74–92. (
https://doi.org/10.1039/C4EE01075B)
[9] Searle, S., Malins, C., "A reassessment of global bioenergy potential in 2050", Gcb Bioenergy, Vol. 7, (2015), 328–336. (https://doi.org/10.1111/gcbb.12141)
[10] Rosatella, A.A., Simeonov, S.P., Frade, RFM., Afonso, CAM., "5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications", Green Chem, Vol. 13, (2011), 754–93. (https://doi.org/10.1039/C0GC00401D)
[12] Davidson, M.G., Elgie, S., Parsons, S., Young, T.J., "Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies", Green Chem, Vol. 23, (2021), 3154-3171. (https://doi.org/10.1039/D1GC00721A)
[13] Arikan, E.B., Bouchareb, E.M., Bouchareb, R., Yağcı, N., Dizge, N., "Innovative Technologies Adopted for the Production of Bioplastics at Industrial Level", Bioplastics Sustain Dev., Springer; 2021, p. 83–102. (https://doi.org/10.1007/978-981-16-1823-9_3)
[14] Hwang, K-R., Jeon, W., Lee, S.Y., Kim, M-S., Park, Y-K., "Sustainable bioplastics: Recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF", Chemical Engineering Journal, Vol.390, (2020), 124636. (
https://doi.org/10.1016/j.cej.2020.124636)
[15] Bonner, T.G., Bourne, E.J., Ruszkiewicz, M., "The iodine-catalysed conversion of sucrose into 5-hydroxy-methylfurfuraldehyde". Journal of Chemical Society, (1960),787–791.(https://doi.org/10.1039/JR9600000787)
[16] Motagamwala, A.H., Huang, K., Maravelias, C.T., Dumesic, J.A., "Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement", Energy&Environmental Science, Vol. 12, (2019), 2212–2222.(https://doi.org/10.1039/C9EE00447E)
[17] Hou, Q., Li, W., Zhen, M., Liu, L., Chen, Y., Yang, Q., Huang, F., Zhang, S., Ju, M., "An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations", RSC Advances, Vol. 7, (2017), 47288–47296. (https://doi.org/10.1039/C7RA10237B)
[18] Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I.G., Boopathy, R., "Conversion of Glucose to 5-Hydroxymethylfurfural, Levulinic Acid, and Formic Acid in 1, 3-Dibutyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazolium Iodide-Based Ionic Liquid", Applied Sciences, Vol. 11, (2021), 989. (DOI: 10.3390/app11030989)
[19] Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E., "THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass", Green Chemistry, Vol. 15, (2013), 3140–3145. (https://doi.org/10.1039/C3GC41214H)
[20] Bello Ould-Amer, S., Méndez Trelles, P., Rodil Rodríguez, E., Feijoo Costa, G., Moreira Vilar, M.T., "Towards improving the sustainability of bioplastics: Process modelling and life cycle assessment of two separation routes for 2, 5-furandicarboxylic acid", Seperation and Purification Technology, Vol. 23, (2020), 116056. (
https://doi.org/10.1016/j.seppur.2019.116056)
[21] Zhang, Y., Guo, X., Tang, P., Xu, J., "Solubility of 2, 5-Furandicarboxylic Acid in Eight Pure Solvents and Two Binary Solvent Systems at 313.15–363.15 K", Journal of Chemical Engineering Data, Vol. 63, (2018), 1316–1324. (https://doi.org/10.1021/acs.jced.7b00927)
[22] Esteban, J., Vorholt, A.J., Leitner, W., "An overview of the biphasic ehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides", Green Chemistry, Vol. 22, (2020), 2097–2128. (https://doi.org/10.1039/C9GC04208C)
[23] Weingarten, R., Rodriguez‐Beuerman, A., Cao, F., Luterbacher, J.S., Alonso, D.M., Dumesic, J.A, Huber, G.W., "Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents"., ChemCatChem, Vol.6, (2014), 2229–2234. (https://doi.org/10.1002/cctc.201402299)
[24] Blumenthal, L.C., Jens, C.M., Ulbrich, J., Schwering, F., Langrehr, V., Turek, T., Kunz, U., Leonhard, K., Palkovits, R., "Systematic identification of solvents optimal for the extraction of 5-hydroxymethylfurfural from aqueous reactive solutions", ACS Sustainable Chem Eng, Vol. 4, (2016), 28–35. (https://doi.org/10.1021/acssuschemeng.5b01036)
[25] Klamt, A., "The COSMO and COSMO‐RS solvation models", WIREs Computational Molecular Science, Vol. 8, (2018); 699–709. (https://doi.org/10.1002/wcms.1338)
[26] Balchandani, S., Singh, R., "Thermodynamic analysis using COSMO-RS studies of reversible ionic liquid 3-aminopropyl triethoxysilane blended with amine activators for CO2 absorption", Journal of Molecular Liquids, Vol. 324, (2021), 114713. (https://doi.org/10.1016/j.molliq.2020.114713)
[27] Eckert F, Klamt A. COSMOtherm, version 18.0. 0. Cosmol GmbH CoKG Leverkusen, Ger 2018.
[28] Momany, F., Schnupf U., "DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent COSMO" Computational Theoretical Chemistry, Vol. 1029, (2014), 57–67. (https://doi.org/10.1016/j.comptc.2013.12.007)
[29] Wang, Z., Bhattacharyya, S., Vlachos, D.G., "Solvent selection for biphasic extraction of 5-hydroxymethylfurfural via multiscale modeling and experiments", Green Chemistry, Vol. 22, (2020), 8699–8712. (https://doi.org/10.1039/D0GC03251D)
[30] Klamt, A., "Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena", J. Phys. Chem. Vol. 99, (1995) 2224–2235. (https://doi.org/10.1021/j100007a062)
[31] Klamt, A., "COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design", Elsevier: Amsterdam, The Netherlands, (2005). 246 pp. ISBN 0-444-51994-7. (https://www.sciencedirect.com/book/9780444519948/cosmo-rs#book-info)
[32] Forlemu, N., Watkins, P., Sloop, J., " Molecular Docking of Selective Binding Affinity of Sulfonamide Derivatives as Potential Antimalarial Agents Targeting the Glycolytic Enzymes: GAPDH, Aldolase and TPI", Open Journal of Biophysics, Vol. 7, (2017), 41-57. (http://dx.doi.org/10.4236/ojbiphy.2017.71004)
[33] Sosa, C., Andzelm, J., Elkin, B.C., Wimmer, E., Dobbs, K.D., Dixon, D.A., "A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds", J. Phys. Chem, Vol. 96, (1992), 6630–6636. (https://doi.org/10.1021/j100195a022)
[34] Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., "Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation", Canadian Journal of Chemistry, Vol. 70, (1992), 560–571. (https://doi.org/10.1139/v92-079)
[35] Klamt, A., Eckert, F., Reinisch, J., Wichmann K., "Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set", J. Comput. Aided. Mol. Des., Vol. 30, (2016), 959–967. (DOI: 10.1007/s10822-016-9927-y)
[36] Zhao X, Farajtabar A, Han G, Zhao H. Phenformin in aqueous co-solvent mixtures of N, N-dimethylformamide, ethanol, N-methylpyrrolidone and dimethyl sulfoxide: Solubility, solvent effect and preferential solvation. J Chem Thermodyn, Vol. 144, (2020), 106085. (
doi.org/10.1016/j.jct.2020.106085)