Document Type : Research Article

Authors

1 Department of Management and Information Technology, Faculty of Management, Ahmad Dahlan Institute of Technology and Business

2 Department of Information Technology, Faculty of Computer Science, Universitas Indonesia

10.30501/jree.2022.354796.1423

Abstract

The percentage of production and utilization of hydrocarbon resources from the livestock sector has raised concerns regarding the worldwide issue of global warming. A total CH4 emissions 78.3% from enteric fermentation and waste management. Meanwhile, N2O emissions are 75–80% of total agricultural emissions. This raises questions about the extent of global warming due to increased CO2 resulting in changes in weather and global warming. This research is aimed to predict Green House Gas (GHG) emissions from manure management and present policy alternatives for Indonesian livestock development. Secondary data is taken from fao.org with coverage throughout Indonesia from 1961 to 2021, containing 12,480 rows and 5 column features; item, Element, Year, Unit, and Value emission. LSTM and GRU are used to predict emission trends from manure management to provide alternative policies for greenhouse gas mitigation in Indonesia. The results showed that from a total of 15 types of livestock that emit GHG emissions, 3 types of livestock produce the highest emissions from 1961 to 2021: (a) Cattle, (b) Cattle, and non-dairy (c) Poultry birds. Significant reductions in carbon dioxide equivalent(CO2eq) emissions in 2020 are indicated by reduced public consumption, and hampered supply chains with large-scale social restrictions (covid-19 pandemic policy). Based on these results. the policy CO2eq emission mitigation is during the storage of manure, which leads to more sustainable fertilizer management practices. Mitigation to reduce methane emissions can also be done by utilizing livestock waste as biogas and improving animal feed additives using chitosan or potassium nitrate.

Keywords

Main Subjects

[1] Broucek, “Production of Methane Emissions from Ruminant Husbandry: A Review,” J. Environ. Prot. (Irvine,. Calif)., vol. 05, no. 15, pp. 1482–1493, 2014, doi: 10.4236/jep.2014.515141.
[2] A. M. Hongmin Dong, Joe Mangino, M. A. de L. Jerry L. Hatfield, Donald E. Johnson, Keith R. Lassey, and A. Romanovskaya, “EMISSIONS FROM LIVESTOCK AND MANURE MANAGEMENT,” Fundam. Appl. Climatol., vol. 2, pp. 5–13, 2019, doi: 10.21513/0207-2564-2019-2-05-13.
[3] FAOSTAT Agriculture Total Online Database, “FAOSTAT Agriculture Total Online Database,” org, 2020. http://www.fao.org/faostat/en/#data/GT (accessed Oct. 20, 2021).
[4] S. • J. Gaughan and L. B. • C. Prasad, “Climate Change Impact on Livestock: Adaptation and Mitigation,” Clim. Chang. Impact Livest. Adapt. Mitig., pp. 399–424, 2015, doi: 10.1007/978-81-322-2265-1_23.
[5] Whelan, Brett, Taylor, James, Taylor, James Arnold, Precision agriculture for grain production systems. Collingwood: CSIRO, 2013.
[6] Zhao et al., “A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency,” F. Crop. Res., vol. 154, pp. 23–30, 2013, doi: 10.1016/j.fcr.2013.07.019.
[7] Fang, L. Tian, M. Fu, M. Sun, R. Du, and M. Liu, “Investigation of carbon tax pilot in YRD urban agglomerations-analysis and application of a novel ESER system with carbon tax constraints,” Energy Procedia, vol. 88, no. 025, pp. 290–296, 2016, doi: 10.1016/j.egypro.2016.06.148.
[8] R. Anderson, E. Hawkins, and P. D. Jones, “CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models,” Endeavour, vol. 40, no. 3, pp. 178–187, 2016, doi: 10.1016/j.endeavour.2016.07.002.
[9] dan I. M. M. I G. Mahardika, N.N. Suryani, N.P. Mariani, I W. Suarna, M.A.P. Duarsa, “Pemanfaatan Limbah Lidah Buaya Sebagai Feed Supplemet Pakan Sapi Bali Dalam Upaya Mengurangi Emisi Metan,” Pastura  Ilmu Tumbuh. Pakan Ternak, vol. 1, no. 2, pp. 44–47, 2011, doi: 10.24843/Pastura.2012.v01.i02.p03.
[10] P. Harahap, D. Setiawana, S. Nahrowib, S. Suharti, T. Obitsud, and A. Jayanegara, “Enteric Methane Emissions and Rumen Fermentation Profile Treated by Dietary Chitosan: A Meta-Analysis of In Vitro Experiments,” Trop. Anim. Sci. J., vol. 43, no. 3, pp. 233–239, 2020, doi: 10.5398/tasj.2020.43.3.233.
[11] C. W. T. Rajendra K. Pachauri, Leo Meyer, “Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)],” IPCC, Geneva, Switz., p. 155, 2014.
[12] Herawati, “Refleksi Sosial Dari Mitigasi Emisi Gas Rumah Kaca Pada Sektor Peternakan Di Indonesia,” Wartazoa, vol. 22, no. 1, pp. 35–46, 2012.
[13] Le Quéré et al., “Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement,” Nat. Clim. Chang., vol. 10, no. 7, pp. 647–653, 2020, doi: 10.1038/s41558-020-0797-x.
[14] S. Miranti Ariani, M. Ardiansyah, “Inventarisasi Emisi GRK Lahan Pertanian Di Kabupaten Grobogan Dan Tanjung Jabung Timur Dengan Menggunakan Metode IPCC 2006 Dan Modifikasinya,” J. Sumberd. Lahan, vol. 9, no. 1, pp. 15–26, 2015, doi: 10.2018/jsdl.v9i1.6516.
[15] Utaminingsih and S. Hidayah, “Mitigasi emisi gas rumah kaca melalui penerapan irigasi intermittent di lahan sawah beririgasi,” J. Irig., vol. 7, no. 2, p. 132, 2012, doi: 10.31028/ji.v7.i2.132-141.
[16] Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review,” Comput. Electron. Agric., vol. 151, no. November 2017, pp. 61–69, 2018, doi: 10.1016/j.compag.2018.05.012.
[17] Limanseto, “Upaya Penurunan Gas Rumah Kaca Melalui Langkah Strategis pada Sektor Kritikal Perubahan Iklim,” Kementerian Koordinator Bidang Perekonomian, Feb. 2021.
[18] Puslitbangnak, EMISI GAS RUMAH KACA DARI PETERNAKAN DI INDONESIA DENGAN TIER2 IPCC. Jakarta: LIPI Press, 2019.
[19] Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020, doi: 10.1007/s10462-020-09838-1.
[20] Hamrani, A. Akbarzadeh, and C. A. Madramootoo, “Machine learning for predicting greenhouse gas emissions from agricultural soils,” Sci. Total Environ., vol. 741, p. 140338, 2020, doi: 10.1016/j.scitotenv.2020.140338.
[21] World Meteorological Organization & Atmosphere Watch Global, “GREENHOUSE GAS,” 2017. https://public.wmo.int/en/resources/library/wmo-greenhouse-gas-bulletin (accessed Oct. 21, 2021).
[22] R. S. Masson Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, M. I. G. A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, and and T. W. E. Lonnoy, T. Maycock, M. Tignor, “Summary for Policymakers,” 2018. Accessed: Oct. 21, 2021. [Online]. Available: https://www.ipcc.ch/sr15/chapter/spm/.
[23] Peraturan Presiden RI, Peraturan Presiden Republik Indonesia No 61 Tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca. Indonesia, 2011.
[24] Peraturan Presiden RI, Peraturan Presiden Republik Indonesia No. 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional. Indonesia, 2011.
[25] Missanjo and H. Kadzuwa, “Greenhouse gas emissions and mitigation measures within the forestry and other land use subsector in Malawi,” Int. J. For. Res., vol. 2021, no. i, 2021, doi: 10.1155/2021/5561162.
[26] Ratnawati, “Carbon Tax Sebagai Alternatif Kebijakan Untuk Mengatasi Eksternalitas Negatif Emisi Karbon di Indonesia,” Indones. Treas. Rev. J. Perbendaharaan Keuang. Negara dan Kebijak. Publik, vol. 1, no. 2, pp. 53–67, 2016, doi: 10.33105/itrev.v1i2.51.
[27] D. N. and P. T. R. Phuong L T B, “Effect of NPN source, level of added sulphur and source of cassava leaves on growth performance and methane emissions in cattle fed a basal diet of molasses,” Livest. Res. Rural Dev., vol. 24, 2012, [Online]. Available: http://www.lrrd.org/lrrd24/4/phuong24070.htm.
[28] R. Jayanegara, Erika B. Laconi Anuraga, Ratna P. Haryati, Ainun Nafisah, Pipih Suptijah, “Derivatization of Chitin and Chitosan from Black Soldier Fly (Hermetia illucens) and Their Use as Feed Additives: An In vitro Study,” Arch. Anesthesiol. Crit. Care, vol. 8, no. 5, pp. 472–477, 2020, doi: http://dx.doi.org/10.17582/journal.aavs/2020/8.5.472.477 ISSn.