Document Type : Research Article

Authors

Department of Mechanical Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

Abstract

Microbial Fuel Cells (MFCs) represent an environmentally-friendly approach to generating electricity, but the need to study variation parameters to find improvement conditions has been an important challenge for decades. In this study, a single-chamber MFC was designed to investigate the key parameters such as the concentration and type of bacteria, chamber temperature, electrode spacing, and substrate rotation speed that affected the performance of MFCs. Therefore, two types of bacteria, Shewanella oneidensis (S.one) and Escherichia coli (E. coli), were compared as microorganisms. Then, the function of MFC was investigated under the following condition: three temperatures (30 ℃, 45℃, and 60℃), three bacterial concentrations (0.5% (v/v) (4.5 mg/ml), 1% (v/v) (9mg/ml), and 1.5% (v/v) (13.5mg/ml)), electrode distances (2 cm, 3 cm, 4cm), and substrate speeds (100 rpm, 150 rpm, 200 rpm). Ultimately, (S.one) bacteria, a chamber temperature of 45 ℃, a bacterial concentration of 1% (v/v) (9mg/ml), a cathode-anode spacing of 3 cm, and a rotation speed of 150 rpm proved to be the most efficient parameter settings for the constructed microbial fuel cell. The maximum voltage and highest power density were 486.9 mV and 9.73 mW/ , respectively, with a resistance of 7500 ohms. These results are meaningful for determining and improving important parameters in an MFC device.

Keywords

Main Subjects

  1. Aghababaie, M., Farhadian, M., Jeihanipour, A., & Biria, D. (2015). Effective factors on the performance of microbial fuel cells in wastewater treatment. Environmental Technology Reviews, 4(1), 71-89. https://doi.org/10.1080/21622515.2015.1126235
  2. Al-Asheh, S., Al-Assaf, Y., & Aidan, A. (2020). Single-chamber microbial fuel cells’ behavior at different operational scenarios. Energies, 13, 5458. https://doi:10.3390/en13205458
  3. Angelaalincy, M. J., Krishnaraj, R.N., G, S., Ashokkumar, B., Kathiresan, S. & Varalakshmi, P. (2018). Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bio Electrochemical Systems. Frontiers in Energy Research, 6. https://doi.org/10.3389/fenrg.2018.00063
  4. Bhargavi, G., Venu, V. & Renganathan, S. (2018) Microbial fuel cells: recent developments in design and materials. IOP Conf. Series: Materials Science and Engineering, 330, 012034. https://doi.org/10.1088/1757-899X/330/1/012034
  5. Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., & Liu, H. (2019). Electricians in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18, Article 39. https://doi.org/10.1186/s12934-019-1087-z
  6. Chhazed, A. J., Makwana, M. V., & Chavda, N. K. (2019). Microbial Fuel Cell Functioning, Developments and Applications. International Journal of Scientific & Technology Research, 8(12). http://www.ijstr.org/final-print/dec2019/Microbial-Fuel-Cell-Functioning-Developments-And-Applications-a-Review-.pdf
  7. Cui, C. Y. (2016). The effect of anode surface structures on microbial fuel cells (Master's thesis). Retrieved from https://kb.osu.edu/bitstream/handle/1811/76443/CuiClare_Thesis_Final.pdf?sequence=1
  8. Dessie, Y., Tadesse, S., & Eswaramoorthy, R. (2020). Review on manganese oxide-based biocatalyst in microbial fuel cell: Nanocomposite Materials Science for Energy Technologies, 3(4), 136-149. https://doi.org/10.1016/j.mset.2019.11.001
  9. Ezziat, L., Elabed, A., Ibnsouda, S. K., & El Abed, S. (2019). Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal from Wastewater. Frontiers in Energy Research, 7, 1. https://doi.org/10.3389/fenrg.2019.00001
  10. Feng, Y., Lee, H., Wang, X., & Liu, Y. (2019). Electricity generation in microbial fuel cells at different temperature and isolation of electrogenic bacteria. In Asia-Pacific Power and Energy Engineering Conference. https://www.researchgate.net/publication/224444633
  11. Flimban, S. G. A., Kim, T., Ismail, I. M. I., & Oh, S. (2019). Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability. Energies 2019, 12(17), 3390. https://doi.org/10.3390/en12173390
  12. Gadkari, S., Fontmorin, J.-M., Yu, E., & Sadhukhan, J. (2020). Influence of temperature and other system parameters on microbial fuel cell performance: Numerical and experimental investigation. Chemical Engineering Journal, 388, 124176. https://doi.org/10.1016/j.cej.2020.124176
  13. Gajda, I., Greenman, J., & Ieropoulos, I. (2020). Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 262, 114475. https://doi.org/10.1016/j.apenergy.2019.114475
  14. González-Gamboa, N., Domínguez-Benetton, X., Pacheco-Catalán, D., Kumar-Kamaraj, S., Valdés-Lozano, D., Domínguez-Maldonado, J., & Alzate-Gaviria, L. (2018). Effect of operating parameters on the performance evaluation of benthic microbial fuel cells using sediments from the Bay of Campeche. Journal of Sustainability, 10. https://doi:10.3390/su10072446
  15. Greenman, J., Mendis, B. A., Gajda, I., & Ieropoulos, I. A. (2022). Microbial fuel cell compared to a chemostat. Chemosphere, 296, 133967. https://doi.org/10.1016/j.chemosphere.2022.133967  
  16. Hamed, M. S., Majdi, H. S., & Hasan, B. O. (2020). Effect of electrode material and hydrodynamics on the produced current in double chamber microbial fuel cells. ACS Omega, 5, 10018-10025. https://DOI: 10.1021/acsomega.9b04451
  17. Harimawan, A., Devianto, H., Al-Aziz, R. H. R. M. T., Shofinita, D., & Setiadi, T. (2018). Influence of electrode distance on electrical energy production of microbial fuel cell using tapioca wastewater. Journal of Engineering and Technological Sciences, 50(6), 841-855. https://doi: 10.5614/j.eng.technol.sci.2018.50.6.7
  18. Imologie, S. M., Raji, O. A., Agidi, G., & Shekwaga, C. A. O. (2016). Performance of a Single Chamber Soil Microbial Fuel Cell at Varied External Resistances for Electric Power Generation. Journal of Renewable Energy and Environment, 3, 53-58. https://doi.org/10.30501/jree.2016.70092
  19. Juliastuti, S. R., Darmawan, R., Ayuningtyas, A., & Ellyza, N. (2017). The utilization of Escherichia coli and Shewanella oneidensis for microbial fuel cell. In The 3rd International Conference on Chemical Engineering Sciences and Applications IOP, 34, 20-21. http://dx.doi.org/10.1088/1757-899X/334/1/012067
  20. Jumma, S. & Patil, N. (2016). Microbial Fuel Cell: Design and Operation. Journal of Microbiology and Biotechnology, Special Issue, Reviews on Microbiology. https://www.researchgate.net/publication/308333548
  21. Keshavarz, M., Mohebbi-Kalhori, D., & Yousefi, V. (2022). Multi-response optimization of tubular microbial fuel cells using response surface methodology (RSM). Journal of Renewable Energy and Environment (JREE), 9(2), 49-58. https://doi.org/10.30501/jree.2022.290677.1218
  22. Kiaeenajad, A., Moqtaderi, H., Mahmoodi, N., Maerufi, S. (2020). Design and Construction of a Microbial Fuel Cell for Electricity Generation from Municipal Wastewater Using Industrial Vinasse as Substrate. Modares Mechanical Engineering, 20(9), 2403-2412. http://mme.modares.ac.ir/article-15-38562-en.html
  23. Kong, X., Yang, G., & Sun, Y. (2018). Performance investigation of batch mode microbial fuel cells fed with high concentration of glucose. Journal of Scientific and Technical Research, 7. https://DOI: 10.26717/BJSTR.2018.03.000864
  24. Koók, L., Nemestóthy, N., Bélafi-Bakó, K., & Bakonyi, P. (2021). Treatment of dark fermentative H2 production effluents by microbial fuel cells: A tutorial review on promising operational strategies and practices. International Journal of Hydrogen Energy, 46(17), 5556–5569. https://doi.org/10.1016/j.ijhydene.2020.11.084
  25. Lee, C.Y. & Huang, Y.N. (2013) The effects of electrode spacing on the performance of microbial fuel cells under different substrate concentrations. Water Science and Technology, 68(8), 1898-1902. https://doi.org/10.2166/wst.2013.446 PMID: 24225104
  26. Li, S., Ho, S.H., Hua, T., Zhou, Q., Li, F. & Tang, J. (2021). Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Green Energy & Environment, 6(4), 644-659. https://doi.org/10.1016/j.gee.2020.11.010
  27. Liu, Y., Sun, X., Yin, D., Cai, L., & Zhang, L. (2020). Suspended anode-type microbial fuel cells for enhanced electricity generation. RSC Advances, 10, 9868-9877. https://DOI: 10.1039/c9ra08288c
  28. Marashi, S. K. F., & Kariminia, H. R. (2015). Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental Health Science and Engineering, 13. https://doi.org/10.1186/s40201-015-0179-x
  29. Mateo, S., Cañizares, P., Rodrigo, M. A., & Fernandez-Morales, F. J. (2018). driving force behind electrochemical performance of microbial fuel cells fed with different substrates. Chemosphere, 207. https://doi.org/10.1016/j.chemosphere.2018.05.100
  30. Mei, X., Xing, D., Yang, Y., Liu, Q., Zhou, H., Guo, C., Ren, N. (2017). Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry, 118, 8-15. https://doi.org/10.1016/j.bioelechem.2017.04.005
  31. Meidensha, A.M.M., Kouzuma, A., & Watanabe, K. (2015). Effects of NaCl concentration on anode microbes in microbial fuel cells. AMB Express, 5. https://doi.org/10.1186/s13568-015-0123-6
  32. Mishra, B., Awasthi, S. K., & Rajak, R. K. (2017). A review on electrical behavior of different substrates, electrodes and membranes in microbial fuel cell. International Journal of Energy and Power Engineering, 11(9). https://doi.org/10.5281/zenodo.1132290
  33. Nguyen, D.-T., Tamura, T., Tobe, R., Mihara, H., & Taguchi, K. (2020). Microbial fuel cell performance improvement based on FliC-deficient E. coli strain. Energy Reports, 6, 763–767. https://doi.org/10.1016/j.egyr.2020.11.133
  34. Ni, H., Wang, K., Lv, S., Wang, X., Zhuo, L., & Zhang, J. (2020). Effects of concentration variations on the performance and microbial community in microbial fuel cell using swine wastewater. Energies, 13. https://doi.org/10.3390/su10072446
  35. Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 258, 109992. https://doi.org/10.1016/j.jenvman.2019.109992
  36. Obileke, K. C., Onyeaka, H., Meyer, E. L., & Nwokolo, N. N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
  37. Oliot, M., Erable, B., De Solan, M.-L., & Bergel, A. (2017). Increasing the temperature is a relevant strategy to form microbial anodes intended to work at room temperature. Electrochemical Acta, 258, 134-142. https://doi.org/10.1016/j.electacta.2017.10.110
  38. Páez, A., Lache-Muñoz, A., Medina, S., Zapata4, J., & Sánchez, O. (2019). Electric power production in a microbial fuel cell using Escherichia coli and Pseudomonas aeruginosa, synthetic wastewater as substrate, carbon cloth and graphite as electrodes, and methylene blue as mediator. Laboratorio Escala, 10(6). https://doi.org/10.24850/j-tyca-2019-06-11
  39. Pan, Y., Zhua, T., & Heb, Z. (2019). Energy advantage of anode electrode rotation over anolyte recirculation for operating a tubular microbial fuel cell. Electrochemistry Communications, 106, https://doi.org/10.1016/j.elecom.2019.106529
  40. Pandey, G. (2019). Biomass based bio-electro fuel cells based on carbon electrodes: an alternative source of renewable energy. SN Applied Sciences, 1, 1-8. https://doi.org/10.1007/s42452-019-0409-4
  41. Priya, R. L., Ramachandran, T., & Suneesh, P. V. (2016). Fabrication and characterization of high-power dual chamber E. coli microbial fuel cell. Materials Science and Engineering, 149, 012215. https://doi:10.1088/1757-899X/149/1/012215
  42. Ren, H., Jiang, C., & Chae, J. (2017). Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro and Nano Systems, 5, 13. https://doi.org/10.1186/s40486-017-0048-8
  43. Salar-García, M. J., & Ieropoulos, I. (2020). Optimization of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 451, 227741. https://doi.org/10.1016/j.jpowsour.2020.227741
  44. Salar-García, M. J., Walter, X. A., Gurauskis, J., de Ramón Fernández, A., & Ieropoulos, I. (2021). Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochemica Acta, 367, 137385. https://doi.org/10.1016/j.electacta.2020.137385
  45. Şen-Doğan, B., Okan, M., Afşar-Erkal, N., Özgür, E., Zorlu, Ö., & Külah, H. (2020). Enhancement of the start-up time for microliter-scale microbial fuel cells (µMFCs) via the surface modification of gold electrodes. Micromachines (Basel), 11(7), 703. https://doi.org/10.3390/mi11070703
  46. Simeon, I. M., Herkendell, K., Pant, D., & Freitag, R. (2022). Electrochemical evaluation of different polymer binders for the production of carbon-modified stainless-steel electrodes for sustainable power generation using a soil microbial fuel cell. Chemical Engineering Journal Advances, 10, 100246. https://doi.org/10.1016/j.ceja.2022.100246
  47. Singh, A., & Krishnamurthy, B. (2019). Parametric modeling of microbial fuel cells. Journal of Electrochemical Science and Engineering, 9(4), 311-323. http://dx.doi.org/10.5599/jese671
  48. Tabrizi, A., Aghajani, H., & Laleh, F. F. (2019). Review on the Materials for Hydrogen Adsorption & Storage. Journal of Renewable Energy and Environment (JREE), 7(2), 2-13. https://doi.org/20.1001.1.24234931.1399.7.2.2
  49. Tan, S.M., Ong, S.A., Ho, L.N., Wong, Y.S., Thung, W.E., Teoh, T.P. (2020). The reaction of wastewater treatment and power generation of single chamber microbial fuel cell against substrate concentration and anode distributions. Journal Environment Health Sci Eng, 18(1), 793-807. https://doi.org/10.1007/s40201-020-00504-w. PMID: 33312603; PMCID: PMC7721755
  50. Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, 115514. https://doi.org/10.1016/j.apenergy.2020.115514
  51. Wang, V., Sivakumar, K., Yang, L., & Nealson, K. H. (2015). Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Scientific Reports, 5, https://doi:10.1038/srep11222