Document Type : Research Article

Authors

1 Physics Programme, College of Agriculture Engineering and Science, Bowen University, P.M.B. 284, Iwo, Nigeria.

2 Mechatronics Engineering Programme, College of Agriculture Engineering and Science, Bowen University, P. M. B. 284, Iwo, Nigeria.

3 Statistics Programme, College of Agriculture Engineering and Science, Bowen University, P. M. B. 284, Iwo, Nigeria.

Abstract

Wind energy has been identified as a critical component in the growth of all countries throughout the world. Nigeria has been identified as having energy issues as a result of poor maintenance of hydro and thermal energy generating stations. As a result, the current study uses some machine learning approaches over wind speed data for energy generation in the country. Machine learning models were employed for wind speed using selected meteorological parameters. Little research was done using some meteorological data and machine learning to investigate wind speed across Nigerian sub-stations, resulting in the need for further research. This research, on the other hand, focuses on a neural network for forecasting, a Long Short-Term Memory (LSTM) network model based on several fire-work algorithms (FWA). The data for this study came from the archive of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) Web service, which was modeled. The LSTM predicts the wind speed model based on the FWA, which used hyper-parameter optimization and was based on a real-time prediction model that was dependent on the change and dependence of the neural network. The study data was split into two categories: test and training. According to the validation technique, the sample data was reviewed, and the first 80 % of the data was utilized for training, as revealed by the (LSTM) network model. The remaining 20 % of the data was used as forecast data to ensure that the model was accurate. The normalization of the data for the wind speed range of 0 to 1 which illustrates the process data, the high peak in 1985 (a = 0.12 m/s, b = 0.11 m/s, c = 0.13 m/s,      d = 0.08 m/s, e = 0.06 m/s, f = 0.10 m/s) was discovered. However, the summary result of the performances of different 11 Machine Learning algorithms of regression type for each of the seven locations in Nigeria has different values. As a result, it is recommended that this study will facilitate the prediction of wind speed for energy generation in Nigeria.

Keywords

Main Subjects

  1. Adebayo, S., Aweda, F.O., Ojedokun, I.A., & Olapade, O.T. (2022). Refractive index perception and prediction of radio wave through recursive neural networks using meteorological data parameters. International Journal of Engineering, 35(4), 810-818. https://doi.org/10.5829/IJE.2022.35.04A.21
  2. Agbo, E.P., Edet, C.O., Magu, T.O., Njok, A.O., Ekpo, C.M., & Louis, H. (2021). Solar energy: A panacea for the electricity generation crisis in Nigeria. Heliyon, 7(5), e07016. https://doi.org/10.1016/j.heliyon.2021.e07016
  3. Aliyu, A.S., Dada, J.O., & Adam, I.K. (2015). Current status and future prospects of renewable energy in Nigeria. Renewable and Sustainable Energy Reviews, 48, 336-346. https://doi.org/10.1016/j.rser.2015.03.098
  4. Antor, A.F., & Wollega, E.D. (2020). Comparison of machine learning algorithms for wind speed prediction. Proceedings of the International Conference on Industrial Engineering and Operations Management. http://www.ieomsociety.org/detroit2020/papers/198.pdf
  5. Asiegbu, A. (2007). Studies of wind resources in Umudike, South East Nigeria-An assessment of economic viability. https://medwelljournals.com/abstract/?doi=jeasci.2007.1539.1541
  6. Aweda, F.O., Adebayo, S., Samson, T.K., & Ojedokun, I.A. (2021). Modelling net radiative measurement of meteorological parameters using merra-2 data in sub-sahara african town. Iranian (Iranica) Journal of Energy & Environment, 12(2), 173-180. https://doi.org/10.5829/IJEE.2021.12.02.10
  7. Aweda, F.O., Olufemi, S.J., & Agbolade, J.O. (2022). Meteorological parameters study and temperature forecasting in selected stations in sub-sahara africa using merra-2 data. Nigerian Journal of Technological Development, 19(1), 80-91. https://doi.org/10.4314/njtd.v19i1.9
  8. Aweda, F.O., Oyewole, J.A., Fashae, J.B., & Samson, T.K. (2020). Variation of the earth’s irradiance over some selected towns in Nigeria. Iranian (Iranica) Journal of Energy & Environment, 11(4), 301-307. https://doi.org/10.5829/IJEE.2020.11.04.08
  9. Brahimi, T., Alhebshi, F., Alnabilsi, H., Bensenouci, A., & Rahman, M. (2019). Prediction of wind speed distribution using artificial neural network: The case of saudi arabia. Procedia Computer Science, 163, 41-48. https://doi.org/10.1016/j.procs.2019.12.084
  10. Chang, T.P. (2011a). Estimation of wind energy potential using different probability density functions. Applied Energy, 88(5), 1848-1856. https://doi.org/10.1016/j.apenergy.2010.11.010
  11. Chang, T.P. (2011b). Performance comparison of six numerical methods in estimating weibull parameters for wind energy application. Applied Energy, 88(1), 272-282. https://doi.org/10.1016/j.apenergy.2010.06.018
  12. Dhunny, A.Z., Lollchund, R.M., Boojhawon, R., & Rughooputh, S.D. (2014). Statistical modelling of wind speed data for mauritius. International Journal of Renewable Energy Research. 4(4), 1056-1064. https://doi.org/10.20508/ijrer.v4i4.1664.g6447
  13. Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Reichle, R. Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A.M.D., Gu, W., Kim, G.K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (merra-2). Journal of Climate, 30(14), 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  14. Hassani, Z., Hajihashemi, V., Borna, K., & Sahraei Dehmajnoonie, I. (2020). A classification method for e-mail spam using a hybrid approach for feature selection optimization. Journal of Sciences, Islamic Republic of Iran, 31(2), 165-173. https://dx.doi.org/10.22059/JSCIENCES.2020.288729.1007444
  15. Hosseini, E., Behzadfar, N., Hashemi, M., Moazzami, M., & Dehghani, M. (2022). Control of pitch angle in wind turbine based on doubly fed induction generator using fuzzy logic method. Journal of Renewable Energy and Environment (JREE), 9(2), 1-7. https://dx.doi.org/10.30501/JREE.2021.293546.1226
  16. Junior, J.R.B., & do Carmo Nicoletti, M. (2019). An iterative boosting-based ensemble for streaming data classification. Information Fusion, 45, 66-78. https://doi.org/10.1016/j.inffus.2018.01.003
  17. Justus, C., Hargraves, W., Mikhail, A., & Graber, D. (1978). Methods for estimating wind speed frequency distributions. Journal of Applied Meteorology (1962-1982), 17(3), 350-353. https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
  18. Kaoga, D.K., Raidandi, D., Djongyang, N., & Doka, S.Y. (2014). Comparison of five numerical methods for estimating weibull parameters for wind energy applications in the district of kousseri, cameroon. Asian Journal of Natural & Applied Sciences, 3(1), 72. http://www.ajsc.leena-luna.co.jp/AJSCPDFs/Vol.3%281%29/AJSC2014%283.1-08%29.pdf
  19. Khosravi, A., Koury, R., Machado, L., & Pabon, J. (2018). Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustainable Energy Technologies and Assessments, 25, 146-160. https://doi.org/10.1016/j.seta.2018.01.001
  20. Lawan, S., Abidin, W., & Masri, T. (2020). Implementation of a topographic artificial neural network wind speed prediction model for assessing onshore wind power potential in Sibu, Sarawak. The Egyptian Journal of Remote Sensing and Space Science, 23(1), 21-34. https://doi.org/10.1016/j.ejrs.2019.08.003
  21. Li, J., & Tan, Y. (2019). A comprehensive review of the fireworks algorithm. ACM Computing Surveys (CSUR), 52(6), 1-28. https://dl.acm.org/doi/fullHtml/10.1145/3362788
  22. Lin, Z., Liu, X., & Collu, M. (2020). Wind power prediction based on high-frequency scada data along with isolation forest and deep learning neural networks. International Journal of Electrical Power & Energy Systems, 118, 105835. https://doi.org/10.1016/j.ijepes.2020.105835
  23. Liu, X., Zhang, H., Kong, X., & Lee, K.Y. (2020). Wind speed forecasting using deep neural network with feature selection. Neurocomputing, 397, 393-403. https://doi.org/10.1016/j.neucom.2019.08.108
  24. Ma, X., Chen, Y., Yi, W., & Wang, Z. (2021). Prediction of extreme wind speed for offshore wind farms considering parametrization of surface roughness. Energies, 14(4), 1033. https://dx.doi.org/10.3390/en14041033
  25. Ma, Z., Chen, H., Wang, J., Yang, X., Yan, R., Jia, J., & Xu, W. (2020). Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction. Energy Conversion and Management, 205, 112345. https://doi.org/10.1016/j.enconman.2019.112345
  26. Maheri, A., Wiratama, I.K., & Macquart, T. (2022). Performance of microtabs and trailing edge flaps in wind turbine power regulation: A numerical analysis using wtsim. Journal of Renewable Energy and Environment (JREE), 9(2), 18-26. https://dx.doi.org/10.30501/JREE.2021.291397.1220
  27. Martin, M., Cremades, L., & Santabarbara, J. (1999). Analysis and modelling of time series of surface wind speed and direction. International Journal of Climatology: A Journal of the Royal Meteorological Society, 19(2), 197-209. https://doi.org/10.1002/(SICI)1097-0088(199902)19:2<197::AID-JOC360>3.0.CO;2-H
  28. Memarzadeh, G., & Keynia, F. (2020). A new short-term wind speed forecasting method based on fine-tuned lstm neural network and optimal input sets. Energy Conversion and Management, 213, 112824. https://doi.org/10.1016/j.enconman.2020.112824
  29. Mert, I., & Karakuş, C. (2015). A statistical analysis of wind speed data using burr, generalized gamma, and weibull distributions in Antakya, Turkey. Turkish Journal of Electrical Engineering and Computer Sciences, 23(6), 1571-1586. https://dx.doi.org/10.3906/elk-1402-66
  30. Moghadasi, M., Ozgoli, H.A., & Farhani, F. (2021). Steam consumption prediction of a gas sweetening process with methyldiethanolamine solvent using machine learning approaches. International Journal of Energy Research, 45(1), 879-893. https://doi.org/10.1002/er.5979
  31. Moreno, S.R., da Silva, R.G., Mariani, V.C., & dos Santos Coelho, L. (2020). Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. Energy Conversion and Management, 213, 112869. https://doi.org/10.1016/j.enconman.2020.112869
  32. Munteanu, I., Bratcu, A.I., CeangĂ, E., & Cutululis, N.-A. (2008). Optimal Control of Wind Energy Systems: Towards a Global Approach (Vol. 22). Springer. https://link.springer.com/book/10.1007/978-1-84800-080-3
  33. Navas, R.K.B., Prakash, S., & Sasipraba, T. (2020). Artificial neural network based computing model for wind speed prediction: A case study of coimbatore, Tamil Nadu, India. Physica A: Statistical Mechanics and its Applications, 542, 123383. https://doi.org/10.1016/j.physa.2019.123383
  34. Neshat, M., Nezhad, M.M., Mirjalili, S., Piras, G., & Garcia, D.A. (2022). Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies. Energy Conversion and Management, 259, 115590. https://doi.org/10.1016/j.enconman.2022.115590
  35. Nezhad, M.M., Heydari, A., Groppi, D., Cumo, F., & Garcia, D.A. (2020). Wind source potential assessment using sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands. Renewable Energy, 155, 212-224. https://doi.org/10.1016/j.renene.2020.03.148
  36. Nezhad, M.M., Heydari, A., Neshat, M., Keynia, F., Piras, G., & Garcia, D.A. (2022). A mediterranean sea offshore wind classification using merra-2 and machine learning models. Renewable Energy, 190, 156-166. https://doi.org/10.1016/j.renene.2022.03.110
  37. Nezhad, M.M., Neshat, M., Piras, G., & Garcia, D.A. (2022). Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies. Renewable and Sustainable Energy Reviews, 168, 112791. https://doi.org/10.1016/j.rser.2022.112791
  38. Nielson, J., Bhaganagar, K., Meka, R., & Alaeddini, A. (2020). Using atmospheric inputs for artificial neural networks to improve wind turbine power prediction. Energy, 190, 116273. https://doi.org/10.1016/j.energy.2019.116273
  39. Ohunakin, O.S., & Akinnawonu, O.O. (2012). Assessment of wind energy potential and the economics of wind power generation in Jos, Plateau State, Nigeria. Energy for Sustainable Development, 16(1), 78-83. https://doi.org/10.1016/j.esd.2011.10.004
  40. Olubi, O., Oniya, E., & Owolabi, T. (2021). Development of predictive model for radon-222 estimation in the atmosphere using stepwise regression and grid search based-random forest regression. Journal of the Nigerian Society of Physical Sciences, 3(2), 132-139. https://doi.org/10.46481/jnsps.2021.177
  41. Oyedepo, S.O. (2014). Towards achieving energy for sustainable development in Nigeria. Renewable and Sustainable Energy Reviews, 34, 255-272. https://doi.org/10.1016/j.rser.2014.03.019
  42. Oyewole, J.A., Aweda, F.O., & Oni, D. (2019). Comparison of three numerical methods for estimating weibull parameters using Weibull distribution model in Nigeria. Nigerian Journal of Basic and Applied Sciences, 27(2), 8-15. https://doi.org/10.4314/njbas.v27i2.2
  43. Pei, Y., Zheng, S., Tan, Y., & Takagi, H. (2012). An empirical study on influence of approximation approaches on enhancing fireworks algorithm. Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). https://doi.org/10.1109/ICSMC.2012.6377916
  44. Pishgar-Komleh, S., Keyhani, A., & Sefeedpari, P. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (A case study: Firouzkooh county of Iran). Renewable and Sustainable Energy Reviews, 42, 313-322. https://doi.org/10.1016/j.rser.2014.10.028
  45. Pobočíková, I., & Sedliačková, Z. (2014). Comparison of four methods for estimating the Weibull distribution parameters. Applied Mathematical Sciences, 8(83), 4137-4149 https://www.researchgate.net/publication/309918562_Comparison_of_Four_Methods_for_Estimating_the_Weibull_Distribution_Parameters
  46. Rodríguez, F., Florez-Tapia, A.M., Fontán, L., & Galarza, A. (2020). Very short-term wind power density forecasting through artificial neural networks for microgrid control. Renewable Energy, 145, 1517-1527. https://doi.org/10.1016/j.renene.2019.07.067
  47. Rojas, R. (2009). Adaboost and the super bowl of classifiers a tutorial introduction to adaptive boosting. Technical Report of Freie University, Berlin. https://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf
  48. Salahaddin, A.A. (2013). Comparative study of four methods for estimating Weibull parameters for Halabja, Iraq. International Journal of Physical Sciences, 8(5), 186-192. https://doi.org/10.5897/IJPS12.697
  49. Samadianfard, S., Hashemi, S., Kargar, K., Izadyar, M., Mostafaeipour, A., Mosavi, A., Nabipour, N., & Shamshirband, S. (2020). Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Reports, 6, 1147-1159. https://doi.org/10.1016/j.egyr.2020.05.001
  50. Shao, B., Song, D., Bian, G., & Zhao, Y. (2021). Wind speed forecast based on the lstm neural network optimized by the firework algorithm. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/4874757
  51. Staff, International Energy Agency. (2012). Energy Balances of Non-OECD Countries: Organization for Economic. https://doi.org/10.1787/energy_bal_non-oecd-2012-en
  52. Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. Part 1, Proceedings of the Advances in Swarm Intelligence: First International Conference, ICSI, Beijing, China. https://doi.org/10.1007/978-3-642-13495-1_44
  53. Uçar, M.K., Nour, M., Sindi, H., & Polat, K. (2020). The effect of training and testing process on machine learning in biomedical datasets. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/2836236
  54. Venkatakrishnan, G., Rengaraj, R., Sathish, K., Dinesh, R., & Nishanth, T. (2021). Implementation of modified differential evolution algorithm for hybrid renewable energy system. Journal of the Nigerian Society of Physical Sciences, 3(3), 209-215. https://doi.org/10.46481/jnsps.2021.240
  55. Waewsak, J., Chancham, C., Landry, M., & Gagnon, Y. (2011). An analysis of wind speed distribution at Thasala, Nakhon Si Thammarat, Thailand. Journal of Sustainable Energy & Environment, 2(2), 51-55. https://www.thaiscience.info/Journals/Article/JOSE/10889661.pdf
  56. Wang, C., Zhang, H., & Ma, P. (2020). Wind power forecasting based on singular spectrum analysis and a new hybrid laguerre neural network. Applied Energy, 259, 114139. https://doi.org/10.1016/j.apenergy.2019.114139)
  57. Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative study of CNN and RNN for natural language processing. https://arxiv.org/abs/1702.01923
  58. Zafirakis, D., Tzanes, G., & Kaldellis, J.K. (2019). Forecasting of wind power generation with the use of artificial neural networks and support vector regression models. Energy Procedia, 159, 509-514. https://doi.org/10.1016/j.egypro.2018.12.007
  59. Zhang, B., Zheng, Y.-J., Zhang, M.-X., & Chen, S.-Y. (2015). Fireworks algorithm with enhanced fireworks interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(1), 42-55. https://doi.org/10.1109/TCBB.2015.2446487
  60. Zhang, Z., Qin, H., Liu, Y., Wang, Y., Yao, L., Li, Q., Li, J., & Pei, S. (2019). Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction. Energy Conversion and Management, 192, 37-51. https://doi.org/10.1016/j.enconman.2019.04.006
  61. Zheng, S., Janecek, A., & Tan, Y. (2013). Enhanced fireworks algorithm. Proceedings of the 2013 IEEE congress on evolutionary computation. https://ieeexplore.ieee.org/document/6557813