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A B S T R A C T  
 

Wind energy has been identified as a critical component in the growth of all countries throughout the world. 
Nigeria has been identified as having energy issues as a result of poor maintenance of hydro and thermal 
energy generating stations. As a result, the current study uses some machine learning approaches over wind 
speed data for energy generation in the country. Machine learning models were employed for wind speed 
using selected meteorological parameters. Little research was done using some meteorological data and 
machine learning to investigate wind speed across Nigerian sub-stations, resulting in the need for further 
research. This research, on the other hand, focuses on a neural network for forecasting, a Long Short-Term 
Memory (LSTM) network model based on several fire-work algorithms (FWA). The data for this study came 
from the archive of the Modern-Era Retrospective analysis for Research and Applications, Version 2 
(MERRA-2) Web service, which was modeled. The LSTM predicts the wind speed model based on the FWA, 
which used hyper-parameter optimization and was based on a real-time prediction model that was dependent 
on the change and dependence of the neural network. The study data was split into two categories: test and 
training. According to the validation technique, the sample data was reviewed, and the first 80 % of the data 
was utilized for training, as revealed by the (LSTM) network model. The remaining 20 % of the data was used 
as forecast data to ensure that the model was accurate. The normalization of the data for the wind speed range 
of 0 to 1 which illustrates the process data, the high peak in 1985 (a = 0.12 m/s, b = 0.11 m/s, c = 0.13 m/s,      
d = 0.08 m/s, e = 0.06 m/s, f = 0.10 m/s) was discovered. However, the summary result of the performances of 
different 11 Machine Learning algorithms of regression type for each of the seven locations in Nigeria has 
different values. As a result, it is recommended that this study will facilitate the prediction of wind speed for 
energy generation in Nigeria. 
 

https://doi.org/10.30501/jree.2022.354698.1422 

1. INTRODUCTION1 

Energy challenges have been an issue for decades around the 
world; however, wind energy is quickly gaining acceptance 
for the development of any country around the world through 
economic and commercial use for technological development. 
According to (Staff, 2012), a more equitable number of people 
have not benefitted from their national grid all over the world, 
particularly in the African sub-region. These challenges have 
grown fast in Nigeria due to the low supply of the national 
grid to its populace, thus attenuating the industrialization and 
development of the nation due to low or no power supply for 
the nation. Research has shown that wind energy has been 
known to be one of the major sources of energy (Dhunny et 
al., 2014; Pobočíková & Sedliačková, 2014; Salahaddin, 
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2013), which contributes to electricity production (Dhunny et 
al., 2014; Pobočíková & Sedliačková, 2014; Salahaddin, 
2013) and has been considered by so many countries across 
the world (Dhunny et al., 2014; Pobočíková & Sedliačková, 
2014; Salahaddin, 2013). However, (Pishgar-Komleh et al., 
2015) reported that wind energy distribution was shown as a 
power generation, which contributed to Weibull distribution 
among other forms of energy generation. More so, (Agbo et 
al., 2021) reported that Nigeria's energy production could 
benefit from the use of wind energy. It was reported that, on 
average, wind energy velocity prediction contributed to the 
rotation of wind energy turbines in wind farms and, thus, this 
energy generation played a role in the development of any 
nation (Salahaddin, 2013). Authors in (Aliyu et al., 2015; 
Oyedepo, 2014) suggested methods for promoting the 
utilization of wind energy in Nigeria that are equally 
applicable to other sub-Sahara African countries; however, the 
major factors militating against the wind energy deployment 
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in most of these countries are lack of government clear 
policies on wind energy and the economy of technologies. 
Authors in (Asiegbu, 2007; Munteanu et al., 2008; Ohunakin 
& Akinnawonu, 2012) found that the estimation of wind 
energy helped form several methods (Asiegbu, 2007; 
Munteanu et al., 2008; Ohunakin & Akinnawonu, 2012) for 
the generation of wind energy. This also shows that the usage 
of statistical analysis (Asiegbu, 2007; Munteanu et al., 2008; 
Ohunakin & Akinnawonu, 2012) to describe wind energy 
(Asiegbu, 2007; Munteanu et al., 2008; Ohunakin & 
Akinnawonu, 2012) adds to some good research (Asiegbu, 
2007; Munteanu et al., 2008; Ohunakin & Akinnawonu, 2012) 
about wind energy generation (Chang, 2011a, 2011b; Justus et 
al., 1978; Kaoga et al., 2014; Martin et al., 1999; Mert & 
Karakuş, 2015; Waewsak et al., 2011). However, the authors 
of this study prefer to investigate wind energy using a 
machine learning approach. There is universal agreement that 
reliable and environmentally acceptable energy sources are 
critical to meeting rising energy demand (Asiegbu, 2007; 
Munteanu et al., 2008; Ohunakin & Akinnawonu, 2012), 
which is increasing at a faster rate than previously (Asiegbu, 
2007; Munteanu et al., 2008; Ohunakin & Akinnawonu, 
2012), due to high population growth (Asiegbu, 2007; 
Munteanu et al., 2008; Ohunakin & Akinnawonu, 2012), 
technological advancements, and development, among other 
factors (Antor & Wollega, 2020; Oyewole et al., 2019). 
Airstream and lunar energy bases appear to be viable options 
for renewable energy sources (Antor & Wollega, 2020). On 
the other hand, predicting the output of renewable energy 

sources is extremely challenging (Antor & Wollega, 2020). 
Different authors have worked on wind; some of them uses 
Sentinel 1 satellite image analysis by SNAP software (Majidi 
Nezhad et al., 2022) to conduct wind source potential 
assessment; a new forecasting model is based on machine 
learning in Sardinia. However, the authors in (Neshat et al., 
2022) used quaternion convolutional long short-term memory 
neural model and adaptive decomposition method for wind 
speed forecasting in the north Aegean islands. Moreover, in 
(Majidi Nezhad et al., 2022), researchers investigated the sites 
that prioritize offshore wind energy potential and mapping for 
installation of wind forms in an Iranian Island. Furthermore, 
this study (Majidi Nezhad et al., 2020; Majidi Nezhad et al., 
2022) worked on Mediterranean Sea offshore wind 
classification using MERRA-2 and machine learning models. 
However, for this research, the author uses MERRA-2 data to 
investigate wind speed for energy generation using a machine 
learning algorithm approach over selected Nigerian stations. 
However, because of the scarcity of electricity in Nigeria, this 
study was conducted. 
   This research aims to investigate wind speed using a 
machine learning algorithm approach over selected Nigeria 
stations. However, Machine Learning (ML) algorithms require 
effective training and testing to make correct predictions. 
Many datasets are utilized for various purposes to develop an 
algorithm that will generate predictions and judgments based 
on data from the real world according to different authors, as 
shown in Table 1. 

 
Table 1. The use of multi-criteria decision-making methods by multiple studies 

Methods Description Location References 
CEEMDAN, VMD technique, and LSTM Application of hybrid model China (Ma et al., 2020) 
LSTM neural network and optimal input 

sets 
wind speed forecasting Iran (Memarzadeh & Keynia, 

2020) 
Hybrid model and LSTM Multi-step wind speed forecasting Brazil (Moreno et al., 2020) 

Hybrid Laguerre neural network Wind power forecasting China (Wang et al., 2020) 
Machine learning in biomedical datasets Training and testing process Turkey (Uçar et al., 2020) 

ANN Prediction of wind speed and wind 
direction 

Brazil (Khosravi et al., 2018) 

Predictive model Stepwise regression and grid search Nigeria (Olubi et al., 2021) 
ANN Wind power density forecasting Spain (Rodríguez et al., 2020) 
ANN Forecasting of wind power generation Greece (Zafirakis et al., 2019) 
ANN Wind speed distribution Saudi Arabia (Brahimi et al., 2019) 
ANN Wind speed prediction India (Navas et al., 2020) 

Wind speed prediction model Wind speed prediction Nigeria (Lawan et al., 2020) 
high-frequency wind power prediction Wind speed prediction United Kingdom (Lin et al., 2020) 

ANN Wind turbine power prediction Sri Lanka (Nielson et al., 2020) 
Hybrid Approach E-mail spam Iran (Hassani et al., 2020) 

Hybrid renewable energy system Renewable energy system Chennai (Venkatakrishnan et al., 2021) 
LSTM prediction Wind speed prediction China (Zhang et al., 2019) 

Neural network approach Wind speed forecasting China (Liu et al., 2020) 
Wind turbine based Control of pitch angle Iran (Hosseini et al., 2022) 

A numerical analysis using WT Wind turbine power regulation United Kingdom (Maheri et al., 2022) 
 
2. Network architecture with long-short time memory 
(LSTM) 

The LSTM layer captures the temporal dependence of prior 
wind speed on future wind speed (Zhang et al., 2019). The 

information of the nonlinear correlation has a linear and 
maximal correlation coefficient according to Pearson's 
correlation. The LSTM network reveals that in the nearby gate 
dataset, there is a need to compare the performance of huge 
datasets with previously published larger predictors. 
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According to many studies, the gate of the input dataset 
undergoes sigmoid variation, resulting in the tanh of the data 
function. This function displays the weight value that falls 
within the range of -1 to 1, as given in the formulae below: 
 

( )[ ]( )bxhwi it1tit ,σ +=
−

                                                         (1) 

 
( )[ ]( )bxhwc ct1tct ,tanh +=
−

                                                    

(2) 
 

( )[ ]( )bxhw ft1tft ,σf +=
−

                                                        (3) 

 
   The examined state (h(t-1)) has a significant value in the input 
(x(t)) and the outnumber of the state cell (c(t-1)) where the value 
is shown to be zero. The decided gate forgot using the sigmoid 
input function that varied from different networks, showing 
that the examined state (c(t-1)) has a significant value in the 
input(x(t)) and the outnumber of the state cell (c(t-1)). This 
value is occasionally left out of the actual value 1 that is 
retained. However, the architectural output that passed 
through the sigmoid function gate revealed a value of 0 to 1 
(Asiegbu, 2007; Munteanu et al., 2008; Ohunakin & 
Akinnawonu, 2012). However, the function tanh returns the 
weight reflection level of the output sigmoid function's crucial 
multiple (Adebayo et al., 2013; Shao et al., 2021). 
 

( )[ ]( )bxhwo ot1to(t) ,σ +=
−

                                                (4) 

 
)tanh(coh t(t)(t) ×=                                                                 (5) 

 
2.1. Network of Recurrent Neural Networks (RNN) 

The feed-forward network displays information from the 
forward direction with the input node, which could be a ring 
or a sequence network (Shao et al., 2021; Yin et al., 2017). 
There have been some decisions that have been made based 
on the predictions of some future events that are relevant to 
the current input. The feed-forward network is a severe 
problem to deal with since it resulted in a succession of data 
with no memory timeline. The recurrent neural network 
illustrates that the feed-forward network allows for the 
aforementioned output, which is based on the data input. The 

internal state memory of the recurrent neural network displays 
a sequence of input datasets. This network shows that the 
architectural design and application of the neural network 
have a significant impact on the processing of some learning 
languages in machines (Yin et al., 2017). This network can be 
mathematically represented as follows: 
 

( )xhfh (t)1)(tc(t) ,
−

=                                                                  (6) 

 
where fc is the parameterized function, h(t−1), x(t) is the input 
vector at time step t and is the previous state. When you use 
the activation function, you get: 
 

( )xwhwh (t)xh1)(thh(t) tanh +=
−

                                   (7) 

 
   and the output state is described as follows: 
 

hwy (t)hy(y)
=                                                                           (8) 

 
   W indicates that the hidden vector for a unit neuron is the 
input weight, h. The prior weight is known as whh, whereas the 
present weight is known as wxh. The Recurrent Neural 
Network (RNN) is stated to be divided into several categories. 
Multiple single output data (MISOD), multiple outputs, 
multiple inputs data (MOMID), single input, single, single 
output data (SISOD), and single input, multiple outputs data 
(SIMOD) are among these classes; however, the RNN, which 
is heavily influenced by some of the affected gradients, 
vanishes as a result of the significant problem encountered. 
   The Fireworks Algorithm (FWA) (Tan & Zhu, 2010) is a 
swarm intelligence algorithm that selects a set of random 
points constrained by some distance metrics in the hope that 
one or more of them will produce promising results (Zheng et 
al., 2013), allowing for a more focused search and, thereby, 
exploring a very large solution space in this way. The 
algorithm (Zheng et al., 2013) demonstrated that promising 
result (Salahaddin, 2013) in solutions to complex problem (Li 
& Tan, 2019) in a large data space (Zhang et al., 2015). 
   Furthermore, FWA was combined (Aliyu et al., 2015) with 
LSTM to improve the performance of the time series model of 
weather data (Pei et al., 2012). 

 

 
Figure 1. The LSTM's fundamental principle 

 
3. EXPERIMENTAL 

3.1. Model used for the research 

For this research, the model used is based on the Artificial 
Neural Network and 11 different machine learning methods 
employed in this study; however, the data was submitted to 

different percentages: for example, 80 % of the data was 
trained while 20 % of the data was tested using Artificial 
Neural Network (ANN). The accuracy of machine learning 
algorithms in predicting wind speed in seven Nigerian cities 
(Sokoto, Maiduguri, Ilorin, Ikeja, Port Harcourt, and Abuja) is 
compared in this study, but it has a direct impact on wind 
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generation at each location. For testing the algorithms, data 
samples of over 324,120 hours with 20 predictors (i.e. factors) 
for the wind speed response variables were obtained from the 
Solar Data Analysis (SoDa) website archive. The research 
data is derived from meteorological database parameters. 
Clustering data were employed to examine the dataset to get 
insight into it and to facilitate data simplification, which may 
be necessary before further processing, and this followed what 
was reported by (Adebayo et al., 2013; Aweda et al., 2022). 
However, the refractivity index of the meteorological dataset 
on the use of neural networks was retrieved for dataset 
training and testing for forecasting. Furthermore, the model 
evaluation and validation were matched to the statistically 
created model for the analysis. Thus, the performance of the 
proposed model was evaluated utilizing a variety of 
methodologies, including Mean Average Error (MAE), Root 
Mean Square Error (RMSE), and R-square. 
   Consequently, this study focused on wind energy for 
Nigeria's growth. Nigeria, on the other hand, has been noted 
as having energy challenges due to poor maintenance of hydro 
and thermal energy-generating units. In addition, the current 
research questions are as follows: to determine energy for 
human consumption, determine statistical analysis for energy 
generation, determine the performance of the LSTM and bi-
LSTM for training and testing datasets, and determine data 
visualization of other meteorological parameters. 
   As a result, the current study employs several machine 
learning algorithms over wind speed data for energy 

generation in the country in order to tackle the country's 
energy problem using wind speed data. However, due to 
insufficient maintenance of hydro energy generating and poor 
water storage for electricity generation in the country, the 
study, on the other hand, focuses on a forecasting neural 
network, a Long Short-Term Memory (LSTM) network model 
based on several Fire-Work Algorithms (FWA). However, the 
key advantage of using LSTM models based on FWA models 
to tackle the country's energy crisis is that the energy 
generation is based on machine learning, which reduces the 
country's whole reliance on hydro energy generation and 
threatens its economy. 
 
3.3. Data collection and description 

The authors used Solar Data of Modern-Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-
2) meteorological re-analysis for the collection of monthly air 
temperature, air pressure, relative humidity, wind speed, and 
direction for nine tropical regions of African stations (Aweda 
et al., 2020; Aweda et al., 2021; Gelaro et al., 2017). The data 
was evaluated on January 15th, 2022. From 1985 to 2021, the 
data was collected in Comma-Separated Value (CSV) format 
as a monthly average for January to December of each year. 
The dataset includes the name of the city, latitude and 
longitude coordinates, and the date of the observation (Figure 
2). 

 

 
Figure 2. The stations depicted on the map 

 
3.4. The subject of research 

The following stations were employed in this study: Abuja, 
Ilorin, Ikeja, Damaturu, Port Harcourt, and Sokoto. These 
stations were chosen from throughout the country (Table 2). 
The effect of meteorological data across the country is 
demonstrated by dividing these stations into different climate 
areas. 
 
3.5. Metrics for statistical accuracy 

The study employed performance metrics to compute           
R-Squared, RMSE, and MAE by calculating data training and 
testing. To determine different machine learning parameters 

for the analysis, 80 % of the data was trained and 20 % of the 
data tested. However, from the standpoint of machine 
learning, data processing, feature selection, modeling, and 
testing were performed based on the nature of the data and 
available models for analysis. The prediction error that is 
related to the model performance of the wind speed dataset 
was investigated using statistical parameter (R-Squared, 
RMSE, MAE, MSE). The MAE (mean absolute error) that 
was employed in this study shows the difference between the 
expected and actual values. Mean Squared Error (MSE), on 
the other hand, displays the average value of a dataset by 
squaring the difference between real and predictable values. 
Furthermore, when compared to the value of the original 
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dataset, the root means square error reveals that the coefficient 
of determination (R-squared) reproduces the outcome of the 
matches in the togetherness. In this case, the percentage and 
range are presumed to be between 0 and 1. In contrast, it 
demonstrates that the higher the value of any model, the better 
the outcome. 

 
Table 2. The stations used and their locations 

Stations Longitude 0N Latitude 0E 

Abuja 9.07 7.49 

Ilorin 6.46 7.55 

Ikeja 6.61 3.35 

Damaturu 11.75 11.97 

Port-Harcourt 4.78 17.01 

Sokoto 13.01 5.25 

 

∑
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2ŷyiN
1MSERMSE                         (11) 

( )
( )∑ −

∑ −
−=

yy
ŷy
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where ŷ – the predicted value of y, y – mean value of y. 
 
2.6. Normalization of wind speed processes 

XX
XX

minmax

min
nor

X
−

−
=                                                            (13) 

 
   Equation 12 is the normalization formula used in the study. 
Xnor represents the normalization, Xmax the maximum value of 
the wind speed data, and Xmin the minimum value of the wind 
speed data used in the study. 
 
4. RESULTS AND DISCUSSION 

The following stations are labeled based on the results 
reported in the manuscript as shown in Figure 3 (a to f) as in 
a-Abuja, b-Ilorin, c-Ikeja, d-Maiduguri, e-Port-Harcourt and  
f-Sokoto. This displays the wind speed data after the machine 
learning method has filled in the nulls. The findings indicate 
that practically every considered station has an almost similar 
pattern. This demonstrates that all stations in Nigeria have the 
same wind speed pattern. 

 

  
(a) (b) 

  

  
(c) (d) 
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(e) (f) 

Figure 3. Wind speed after the machine learning method has filled in the nulls 
 
The result in Figure 3 (a to f) demonstrates that the pattern of 
wind speed at each station is nearly identical, indicating that 
the wind speed at the chosen station moves at a similar pace, 
which can increase the production of wind energy across the 
entire nation. However, during the period when energy output 
from wind is increasing, short-term wind speed predictions are 
crucial. Furthermore, Figure 3 (a to f) shows the wind speed 
vs date for the stations under investigation. The maximum 
wind speed for the stations was found to be between (6.5-2.6 
m/s), while the minimum wind speed was found to be between 
(0.2-1.0 m/s). This demonstrates that the wind speed for 
energy generation in the reported stations is low. 
   Figure 4 (a to f) shows the dataset split ratio into trained and 
tested, demonstrating that 80 % of the dataset is used for 
training and the remaining 20 % for the purpose test set. 
However, several writers have stated that the test and trained 
data are critical when using machine learning to model wind 

speed. The trained data for this study covers the years 1985 to 
2014, whereas the test data covers the years 2015 to 2021; this 
equates to 30 years of training and 7 years of testing. 
However, the training of the data set takes longer than the 
testing. Furthermore, if the numerical value of the samples 
was adequate, the sampling techniques for this research 
dataset would be balanced. According to authors (Junior & do 
Carmo Nicoletti, 2019; Rojas, 2009), if approaches like 
Boosting and AdaBoost are employed for any study, the 
number of data sets used will be sufficient. Each of the 
samples utilized, however, participates in the training and 
testing operations of the dataset, being separated into parts, 
and the other portions participate in the dataset training, as 
reported in (Junior & do Carmo Nicoletti, 2019; Rojas, 2009). 
By averaging the accuracy rates used to obtain each 
classification technique, the outcome validation for each piece 
of data testing at each phase may be done. 

 

  
(a) (b) 

  

  
(c) (d) 
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(e) (f) 

Figure 4. Training and testing of the wind speed over the selected stations 
 
As shown in Figure 4 (a to f), the data for the study were 
divided into two sets: testing and training. The sample data 
was examined, and the first 80 % of the data was used for 
training, as revealed by the LSTM network model, according 
to the validation procedure. The remaining 20 % of the data 
was utilized as the prediction data to verify the model 
efficiency. 
   Results in Figure 4 show that the training data had more 
input than testing data. However, this demonstrates that the 
training data are more important than testing data. Moreover, 
the training data indicate that the wind speed performs better. 

Figure 5 shows data normalization using Equation 12. This is 
used to process wind speed data (Junior & do Carmo 
Nicoletti, 2019; Rojas, 2009) for samples with values ranging 
from 0 to 1. Figure 5 depicts the process data, showing a high 
peak in 1985 (a = 0.12 m/s, b = 0.11 m/s, c = 0.13 m/s,           
d = 0.08 m/s, e = 0.06 m/s, f = 0.10 m/s). The results reported 
in Figure 4 (a to f) are based on training and testing data sets 
that span 36 years. However, the figure was plotted using 500 
days. This is because the data was normalized. The train days 
were approximately 450 days, while the test data was 
approximately 50 days. 

 

  
(a) (b) 

  

 
 

(c) (d) 
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(e) (f) 
Figure 5. Normalization of wind speed processes over selected stations 

 
The range standardization process for wind speed data, which 
ranges from 0 to 1, is demonstrated by the data normalization 
and is based on the computation method used during the range 
standardization (Shao et al., 2021). However, as reported by 
authors in (Shao et al., 2021), the training of the LSTM 
network model and the first 80 % of the data are used as the 
training data. The remaining 20 % of the data are utilized as 
prediction data to assess the model effectiveness. The 
outcome thus demonstrates the significance of wind speed and 
direction in energy generation forecasting, which could result 
in the production of energy across the entire country. Wind 
speed normalization, in particular, demonstrates that the data 
are typically adjusted for the aim of energy production. 
 
4.1. The theoretical frequency of wind speed 

By exhibiting relative frequencies associated with the stations 
under investigation as shown in Figure 6 (a to f), the 
histogram shows that the dataset is standardized. The fraction 
of cases that fall into multiple categories is equal to 1 

according to the findings. Abuja has a maximum frequency of 
70 and a minimum frequency of around 8. Ilorin, on the other 
hand, has a maximum frequency of roughly 76 and a low 
frequency of around 3. Other stations, as indicated in Figure 6, 
appear to follow the same pattern. The reported results 
revealed that the frequency of wind speed was critical. The 
findings point to this conclusion that the categories of 
consecutive, non-consecutive, and non-overlapping variable 
intervals with categories (intervals) are contiguous, and they 
are all of the same size, as shown in the figures. Each of the 
indicators continuously has its original variables, as shown by 
the histogram rectangle. However, the result shows that none 
of the best numbers is bins, denoting different size bins, as 
some data reveals. The theoretical bin demonstrates that the 
optimal number of data bins is determined from various 
attempts. The bin with widths adequate for the 
experimentation of the dataset utilized in the result is denoted 
by the distribution dependence and the analysis purpose. 

 

  
(a) (b) 

  

  
(c) (d) 
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(e) (f) 

Figure 6. Frequency dataset of the wind speed 
 
The frequency result of the wind speed data demonstrates that 
wind speed contributes significantly to the outcome of energy 
production. However, the frequency result demonstrates that 
good energy generation occurs when the data are well 
correlated, which will increase the country's overall energy 
production. 
 
4.2. Wind speed prediction using basic LSTM 

The core four layers of the LSTM model as shown in Figure 7 
(a to f), each with one input layer and two hidden levels each 
with one output layer, are used to forecast wind speed. That is, 
the connection among the three layers of the LTSM is 
established by the 1st layer of the LTSM, which receives an 
input time step of variable 1, but has 64 neurons, as stated in 
(Shao et al., 2021). The input of the training data transforms 
into its output, which appears after the hidden layer as the 2nd 
layer used in this study. In addition, the input of the training 
transforms into its output, which appears after the hidden layer 

as the third layer used in this study. The number of neurons in 
this study indicates that the first layer has the same pattern as 
in Figure 7 and that the third layer (Dense) uses the first layer 
of the long short-term memory for the output layer of the third 
layer, as shown in the result. The output of the 2nd layer is 
similarly received by the 3rd layer, which is shown as input, 
and the connection is the result of the connected layer. The 
results of the studied stations show that a one-dimensional 
vector with a length of 150 output data sets is connected in the 
learning for the final output of future data sets. The output 
results provided 150 data points, as shown in Figure 7. The 
hidden layer is used to regularize the 2nd layer, as shown in the 
image, and the LSTM is used to validate the dropout layer of 
the data that was added to the 1st layer, confirming what was 
reported by the previous layer (Shao et al., 2021). According 
to the results of the tests, the accuracy of the training set with 
the greatest dropout of 0.2 s was discovered (Ma et al., 2021; 
Shao et al., 2021). 

 

  
(a) (b) 

  

  
(c) (d) 
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(e) (f) 

Figure 7. The performance of the LSTM and bi-LSTM for training and testing datasets 
 
The performance of the bidirectional long-short term memory 
(bi-LSTM) may be seen in this result, where the training and 
validation loss line is always close to one and the loss is 
virtually zero. The model, on the other hand, is of well-trained 
validation. The Recurrent Neural Network (RNN), LSTM, and 
bi-LSTM works were found useful in the investigation of 
wind speed validation and training in this study. As a result, 
each of the models employed in this study is unique. Finally, 
the step-by-step approach yielded a simple bi-LSTM model 
for text classification following what was reported by 
(Samadianfard et al., 2020). The data set, on the other hand, 
was idle for the categorization process, and most of the 
models demonstrate a real-life problem solution for the 

research of wind patterns at the specified study stations. More 
specifically, the model investigates what happened with the 
real-world wind speed data issue. As a result, it will text data, 
audio data, and time series data for the benefit of the outcome. 
   The LSTM and bi-LSTM research indicate that the wind 
energy forecast will increase product knowledge for the 
improvement of energy generation. If this is put to use, it will 
aid in the decrease of the energy problem that the entire nation 
is currently experiencing. Additionally, given that energy is a 
major problem throughout the world, LSTM and bi-LSTM 
will account for a significant energy generation to lessen the 
burden placed on hydroelectric energy output. 

 

  
(a) (b) 

Figure 8. Model training performance against validation loss 
 
   Figure 8 shows the difference in wind speed prediction 
performance among LSTM, BiLSTM, and GRU in terms of 
training and validation loss. The minimum training and 
validation cost (loss) functions are 0.04 and 0.045 at the 4th 
epoch for BiLSTM, 0.043 and 0.046 at the 5th epoch for 
LSTM, and 0.05 and 0.01 at the 6th epoch for GRU. This 
demonstrates that although having the lowest cost function, 
the GRU model has a faster convergence time. To avoid 
model overfitting, the training process was terminated when 
the validation error trend shifted from dropping to climbing; 
this followed what was reported by authors in (Moghadasi et 
al., 2021). 
 
4.3. The training algorithm's performance 

Table 3 presents the summary result of the performances of 
the different 11 Machine Learning algorithms of regression 

type for each of the seven locations in Nigeria. For Abuja, 
Coarse Tree, Ensemble Bagged Trees, and Gaussian-Squared 
Exponential GPR show the highest R2 of 0.44, while for 
Enugu, it was medium Tree (R2 = 0.74). Result reveals that in 
Ikeja, Gaussian-Squared Exponential GPR and Rotational 
Quadratic GPR (R2 = 0.37); for Ilorin, R2 = Ensemble Boosted 
Trees; for Maiduguri, it was Narrow Neural Network; for 
Port-Harcourt, it was Medium Gaussian SVM (R2 = 0.81), 
while for Sokoto, the Narrow Neural Network that gave the 
highest R2 (R2 = 0.68). This implies that these ML algorithms 
exhibit better fitness performance than other models. In terms 
of forecasting performance of these ML algorithms based on 
RMSE, the best forecasting Machine Learning model was 
Ensemble Bagged Trees for Ikeja (RMSE = 0.10299); 
Medium Tree for Enugu (RMSE = 0.0876); Gaussian-Squared 
Exponential GPR and Rotational Quadratic GPR for Ikeja 
(RMSE = 0.11969). Result reveals that Ensemble Boosted 
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Trees give the least RMSE for Ilorin (RMSE = 0.10651), 
Narrow Neural Network for Maiduguri (RMSE = 0.1029), 
Medium Gaussian SVM for Port-Harcourt (RMSE = 

0.10115), and Ensemble Boosted Trees for Sokoto (RMSE = 
0.1218), meaning that these ML algorithms outperformed 
other models. 

 
Table 3. Summary result of the machine learning Algorithm (MLA) for wind speed data across selected stations in Nigeria 

Different 
Models Used 

Abuja Enugu Ikeja Ilorin 

Machine 
Learning 

Algorithm  

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Medium Tree 0.40 0.10681 0.081377 0.74 0.087688 0.065278 0.31 0.12486 0.088858 0.79 0.11676 0.089249 
Coarse Tree 0.44 0.10312 0.080436 0.55 0.11562 0.09035 0.33 0.12353 0.090195 0.75 0.12643 0.10061 

Fine Gaussian 
SVM 

0.33 0.11301 0.085718 0.68 0.097669 0.071186 0.31 0.12535 0.090072 0.77 0.12161 0.092987 

Medium 
Gaussian 

SVM 

0.40 0.10645 0.084072 0.63 0.1041 0.076264 0.31 0.12551 0.093378 0.77 0.1233 0.096499 

Ensemble 
Boosted Trees 

0.36 0.10974 0.08792 0.68 0.096728 0.071891 0.33 0.12295 0.090359 0.83 0.10651 0.082177 

Ensemble 
Bagged Trees 

0.44 0.10299 0.081808 0.67 0.098439 0.0747 0.36 0.12066 0.0936 0.77 0.12106 0.09426 

Gaussian-
Squared 

Exponential 
GPR 

0.44 0.10312 0.080436 0.66 0.10076 0.077159 0.37 0.11969 0.087037 0.79 0.11705 0.0911044 

Gaussian-
Matern 5/2 

GPR 

0.38 0.10814 0.085041 0.66 0.10076 0.077127 0.36 0.12538 0.092184 0.79 0.1175 0.091995 

Exponential 
GPR 

0.37 0.10937 0.085171 0.67 0.099089 0.075147 0.31 0.12086 0.088137 0.79 0.11759 0.091529 

Rotational 
Quadratic 

GPR 

0.39 0.10736 0.084767 0.66 0.10082 0.077192 0.37 0.11969 0.08707 0.79 0.11723 0.091341 

Narrow 
Neural 

Network 

0.39 0.10764 0.08163 0.71 0.093159 0.067218 0.36 0.12493 0.095756 0.79 0.11665 0.090558 

Bidirectional 
LSTM 

-0.0024 0.5298 0.4141 -0.0002 0.8609 0.7271 -3.6399 9.6416 8.5489 -0.0243 0.8712 0.6876 

LSTM -0.0792 0.5497 0.4405 -0.0080 0.8642 0.7471 -3.5740 9.5729 8.4762 -0.0289 0.8731 0.6846 
GRU -0.0025 0.5298 0.4143 -0.0017 0.8615 0.7361 -3.5788 9.5778 8.4802 -0.0178 0.8684 0.6928 

 
Different 

Models Used 
Maiduguri Port-Harcourt  Sokoto    

Machine 
Learning 

Algorithm 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE    

Medium Tree 0.78 0.10669 0.08342 0.80 0.10463 0.078763 0.62 0.12971 0.094396    
Coarse Tree 0.74 0.117 0.093373 0.68 0.13324 0.10785 0.56 0.1394 0.10293    

Fine Gaussian 
SVM 

0.73 0.11877 0.087973 0.78 0.11094 0.082671 0.62 0.12885 0.091896    

Medium 
Gaussian 

SVM 

0.67 0.13115 0.10104 0.81 0.10115 0.077071 0.56 0.13886 0.11089    

Ensemble 
Boosted Trees 

0.78 0.10768 0.082073 0.77 0.1118 0.086639 0.66 0.1218 0.090333    

Ensemble 
Bagged Trees 

0.75 0.1131 0.090676 0.80 0.10471 0.081664 0.59 0.13391 0.10418    

Gaussian-
Squared 

Exponential 
GPR 

0.77 0.10981 0.083424 0.80 0.110449 0.077995 0.66 0.12242 0.90771    
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Gaussian-
Matern 5/2 

GPR 

0.77 0.10925 0.084038 0.80 0.10422 0.077357 0.66 0.12208 0.089877    

Exponential 
GPR 

0.77 0.1086 0.083315 0.80 0.10463 0.077443 0.66 0.12276 0.090102    

Rotational 
Quadratic 

GPR 

0.77 0.10981 0.083424 0.80 0.10437 0.07769 0.66 0.12242 0.090771    

Narrow 
Neural 

Network 

0.80 0.1029 0.081107 0.79 0.10652 0.077358 0.68 0.12444 0.096222    

Bidirectional 
LSTM 

-0.0330 1.2208 1.0137 -0.0321 0.4111 0.3304 -0.0319 1.3147 1.0921    

LSTM -0.0691 1.2419 1.0248 -0.0470 0.4140 0.3323 -0.0283 1.3124 1.0904    
GRU -0.0882 1.2530 1.0305 -0.0139 0.4074 0.3293 -0.0351 1.3168 1.0936    

 
Furthermore, the performance of LSTM, BiLSTM, and GRU 
models is shown in Table 3 using three assessment metrics: 
R2, MAE, and RMSE. The neurons in the hidden layers, as 
well as the hyper-parameter turning, significantly affect the 
architecture of the models. The number of hidden layers was 
modified from two to five to achieve the best architecture, 
with each layer holding thirty neurons. The average 
coefficients of determination (R2) for all the stations observed 
for LSTM, BiLSTM, and GRU with two layers are -0.548,      
-0.538, and -0.534, respectively. This demonstrates that the 
three models outperform the other models used. Furthermore, 
as the model complexity increases, so does its performance. 
The MAE and RMSE statistics show that as the number of 
neurons increases, GRU and BiLSTM tend to marginally 
reduce prediction errors in comparison to the LSTM neural 
network model. GRU outperformed both the BiLSTM and 
LSTM by a narrow margin. Table 4 further demonstrates that 
wind speed prediction using GRU with one hidden layer has 
the lowest MAE and RMSE. 
   The pair plots of meteorological data utilized for wind speed 
prediction are shown in the resulting Figure 9 (a to f). It was 

discovered that the tools swiftly investigated how to distribute 
the dataset and the relationships within it. 
   The sea born, on the other hand, demonstrates that the pair 
plot of the dataset is the easy default way. As seen in Figure 9, 
wind speed against temperature has a fragmented dataset for all 
of the stations studied. The customized extended pair grid, on 
the other hand, demonstrates that the dataset is a significant 
component of the value, which is derived not from showy 
machine learning but the visualization of the dataset. A pair 
plot is a powerful tool for analyzing large datasets. This aids in 
the display of the weather data. 
   Table 4 displays the descriptive statistics analysis of the 
variability of wind speed data for the chosen stations. The 
results show that the maximum wind speed recorded was 6.14 
at Sokoto in January with a standard deviation of 0.74, while 
the minimum wind speed recorded was 0.10 at Ilorin in 
December, with a standard deviation of 0.61. However, this 
demonstrates that Sokoto is Iran’s north, whereas Ilorin is 
Iran’s centre. As a result, high wind speed in the north and 
low wind speed in the south of the country are given. 

 

 
(a) 



F.O. Aweda et al. / JREE:  Vol. 10, No. 3, (Summer 2023)   81-98 
 

93 

 
(b) 

 

 
(c) 



F.O. Aweda et al. / JREE:  Vol. 10, No. 3, (Summer 2023)   81-98 
 

94 

 
(d) 

 

 
(e) 



F.O. Aweda et al. / JREE:  Vol. 10, No. 3, (Summer 2023)   81-98 
 

95 

 
(f) 

Figure 9. Data visualization of the meteorological parameters 
 
 

Table 4. Summary result of the statistical evaluation for wind speed data across the selected stations in Nigeria 

Months Abuja Enugu Ikeja Ilorin 
Min Max.  Mean STD Min Max.  Mean STD Min Max.  Mean STD Min Max.  Mean STD 

Jan. 0.34 3.90 0.83 1.63 0.06 5.25 1.42 1.15 0.34 3.90 1.63 0.83 0.13 4.15 1.32 0.90 
Feb. 0.11 2.57 0.65 1.10 0.07 2.80 1.35 0.79 0.11 2.57 1.10 0.65 0.02 3.07 1.44 0.82 
Mar. 0.24 2.07 0.45 1.20 0.61 2.94 2.22 0.58 0.24 2.07 1.20 0.45 0.34 3.91 2.55 0.91 
Apr 0.92 2.66 0.38 1.92 2.15 3.19 2.70 0.27 0.92 2.66 1.92 0.38 2.09 4.34 3.53 0.46 
May 1.13 2.41 0.29 1.76 1.93 2.98 2.48 0.24 1.13 2.41 1.76 0.29 2.25 4.11 3.11 0.41 
Jun. 1.06 2.18 0.27 1.68 2.19 3.32 2.72 0.26 1.06 2.18 1.68 0.27 2.31 3.57 2.92 0.35 
Jul. 1.40 2.58 0.31 1.94 2.63 3.82 3.13 0.28 1.40 2.58 1.94 0.31 2.67 3.93 3.24 0.36 

Aug. 1.16 2.64 0.38 1.86 2.47 3.79 3.18 0.28 1.16 2.64 1.86 0.38 2.31 4.16 3.21 0.48 
Sept. 0.61 1.65 0.20 1.07 2.09 3.08 2.54 0.25 0.61 1.65 1.07 0.20 1.43 3.16 1.96 0.38 
Oct. 0.33 1.48 0.27 0.77 1.06 2.46 1.80 0.31 0.33 1.48 0.77 0.27 0.77 2.19 1.28 0.32 
Nov. 0.34 2.40 0.55 1.27 0.05 1.82 0.80 0.43 0.34 2.40 1.27 0.55 0.15 1.98 0.86 0.47 
Dec. 0.37 3.61 0.55 1.76 0.13 3.81 1.32 0.76 0.37 3.61 1.76 0.55 0.10 3.31 1.32 0.61 

 
Months Maiduguri Port-Harcourt Sokoto     

Min Max.  Mean STD Min Max.  Mean  STD Min  Max.  Mean  STD     
Jan. 3.28 5.50 1.63 0.83 0.49 2.34 1.05 0.37 2.79 6.14 4.38 0.74     
Feb. 3.30 5.37 1.10 0.65 0.57 1.96 1.33 0.41 1.92 5.73 4.13 1.01     
Mar. 1.32 5.54 1.20 0.45 1.12 1.92 1.68 0.19 1.17 5.19 2.93 1.02     
Apr 0.17 4.80 1.92 0.38 1.39 1.91 1.71 0.13 0.80 4.44 1.76 0.77     
May 0.32 4.12 1.76 0.29 1.42 1.98 1.66 0.14 1.55 4.43 3.06 0.75     
Jun. 1.50 4.23 1.68 0.27 1.50 2.34 1.95 0.20 2.48 4.27 3.45 0.43     
Jul. 2.42 4.16 1.94 0.31 1.86 2.63 2.27 0.16 2.36 3.64 2.98 0.35     

Aug. 1.54 3.08 1.86 0.38 2.03 2.73 2.38 0.16 1.07 2.83 2.00 0.36     
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Sept. 1.05 2.62 1.07 0.20 1.70 2.44 2.07 0.18 0.79 2.40 1.52 0.40     
Oct. 0.21 2.32 0.77 0.27 1.40 2.02 1.67 0.14 0.61 2.43 1.29 0.40     
Nov. 2.18 4.11 1.27 0.55 0.59 1.64 1.19 0.26 1.94 4.34 3.10 0.60     
Dec. 3.23 4.80 1.76 0.55 0.51 1.40 0.85 0.20 2.18 5.43 4.09 0.57     

 
5. CONCLUSIONS 

The application of wind speed prediction to energy production 
is of significant value, as wind power has a significant impact 
on the planning and stability of power energy around the 
world. This study demonstrates that different LSTM neural 
networks are used to optimize some hyper-parameters in the 
establishment of LSTM prediction models within the 
algorithm framework. When RMSE prediction is compared to 
certain empirical methods, it is discovered that some 
parameters and the double-layer LSTM of the wind speed 
dataset are extremely essential. In comparison to the impact of 
some neural networks and statistical model, the FWA-LSTM 
model produced some predictions in the generation of wind 
speed. However, the LSTM model of the wind speed 
experiment result showed that when compared to each other, 
that is, LSTM and FWA-LSTM methods, error in wind speed 
prediction was significantly reduced. As a result of the wind 
speed investigation, it was discovered that wind speed 
occurrence was more probable at stations like Damaturu, 
Sokoto, and Ikeja. This could result from the exposure of 
stations to tides and ocean currents. 
   As a result of this research, it was concluded that the 
investigation of wind speed energy using the improved active 
learning algorithm could be applied to the effective 
generalization of the larger validation of the data set, which 
would facilitate the prediction of wind energy optimization 
and its importance for power planning to reduce the pressure 
mounted on hydro energy generation because wind energy is 
also a renewable source of energy. Therefore, this research 
recommends that the government of the Federal Republic of 
Nigeria invest more funds in research to help solve Nigeria's 
power outage. 
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NOMENCLATURE 

ANN Artificial Neural Network 
Bi-LSTM Bidirectional Long-Short Term Memory 
CEEMDAN Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise 
CSV Comma-Separated Value 
FWA Fire-Work Algorithms 
GRU Gated Recurrent Unit 
LSTM Long Short-Term Memory 
MAE Mean Average Error 
MERRA-2 Modern-Era retrospective Analysis for Research and 

Applications, Version 2 
MISOD Multiple Single Output Data 
MOMID Multiple Outputs, Multiple Inputs Data 
ML Machine Learning 
MLA Machine Learning Algorithm 
MSE Mean Squared Error 
RMSE Root Mean Square Error 
RNN Recurrent Neural Network 
R Square Root Square 
SISOD Single, Single Output Data 
SNAP Sentinel Application Platform 
VMD Variational Mode Decomposition 
WT Wind Turbine 
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