Document Type : Research Article

Authors

1 Department of Electrical, Electronics, and Telecommunication Engineering, College of Engineering, Bells University of Technology, Ota, Nigeria.

2 Department of Electrical and Electronics Engineering, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

3 School of Computing, Design and Digital Technologies, Teesside University, Middlesbrough, UK.

4 Department of Electrical and Electronics Engineering, University of Johannesburg, Johannesburg, 2006, South Africa

Abstract

The use of Diesel Generators (DGs) and gas turbines to power oil rigs is characterized by pollution due to the emission of harmful gases like carbon dioxide, very high noise levels, high maintenance costs, and the inability to start the platform if the DG fails. Offshore wind energy generation system provides a viable alternative means of powering the oil rig and can also be integrated to operate in parallel with gas turbines. However, offshore wind energy might fail if not properly designed due to the high variability of wind resources. Hence, the objective of this work is to design offshore Wind Turbine Generator (WTG) energy generation system, DG, and hybrid DG-WTG for the black start of an offshore oil rig. The designed energy systems are simulated using HOMER Pro. Furthermore, the performance of the simulated systems was evaluated using the electrical production, unmet load, and emission profile as the performance metrics. The results of the hybrid DG-WTG powered black start revealed that 150kW DG generated 322,071kWh/yr representing 6.77% of the total generation and 1.5MW WTG generated 4,434,632kWh/yr representing 93.2% of the total generation. The comparison of the emissions from DG and DG-WTG revealed that 294,058kg/yr, 1,945kg/yr, 80.9kg/yr, 9.02kg/yr, 720kg/yr, and 688kg/yr of CO2, CO, UH, PM, SO2, and NO, respectively, were released into the atmosphere by DG-WTG which is very low compared to 969,129kg/yr, 6,109kg/yr, 267kg/yr, 37kg/yr, 2373kg/yr, and 5739kg/yr of CO2, CO, UH, PM, SO2, and NO, respectively, released into the atmosphere by DG. The sensitivity analysis revealed that while the electrical production of 100kW and 50kW DGs decreased with an increase in WTG height, the electrical production of 1.5MW WTG increased with an increase in WTG height. It was further revealed that the higher the WTG height the smaller the quantity of the emission released into the atmosphere.

Keywords

Main Subjects

  1. Aardal A. R., Marvik J. I., Svendsen H., & Giaever Tande J. O., (2012). Offshore wind as power supply to oil and gas platforms, Offshore Technol. Conf. Proc., 2, no. May, pp. 1624–1631, https://doi.org/10.4043/23245-ms.
  2. Aazami R., Heydari O., Tavoosi J., Shirkhani M., Mohammadzadeh A., & Mosavi A., (2022) “Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations,” Sustainability, 14, no. 10, p. 6183, , https://doi.org/10.3390/su14106183.
  3. Abdulmula A. Sopian K., Ludin N. A., & Haw L. C., (2022). Micropower system optimization for the telecommunication towers based on various renewable energy sources Micropower system optimization for the telecommunication towers based on various renewable energy sources,” International Journal of Electrical and Computer Engineering (IJECE), pp. 1069–1076,, https://doi.org/10.11591/ijece.v12i2.pp1069-1076.
  4. Aberilla J. M., Gallego-Schmid A., Stamford L., & Azapagic A. (2020). Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities, Energy, vol. 258, no. October, p. 114004,, https://doi.org/10.1016/j.apenergy.2019.114004.
  5. Achirgbenda V. T., Kuhe A., & Okoli K., (2020). Techno-economic feasibility assessment of a solar-biomass-diesel energy system for a remote rural health facility in Nigeria, Energy Sources, Part A Recover. Util. Environ. Eff., 00, no. 00, pp. 1–18, https://doi.org/10.1080/15567036.2020.1813848.
  6. Adaramola M. S., Oyewola O. M., & Paul S. S., (2012). Technical and economic assessment of hybrid energy systems in South-West Nigeria, Energy Exploration & Exploitation ,vol. 30, no. 4, pp. 533–551, https://doi.org/10.1260/0144-5987.30.4.
  7. Adebanji B., Ojo A., Fasina T., Adeleye S., & Abere J., (2022) Integration of Renewable Energy with Smart Grid Application into the Nigeria’s Power Network: Issues, Challenges and Opportunities, J. Eng. Technol. Res., vol. 7, no. 3, pp. 18–24, https://doi.org/10.24018/ejeng.2022.7.3.2792.
  8. Adedipe O., Abolarin M. S., & Mamman R. O., (2018) “A Review of Onshore and Offshore Wind Energy Potential in Nigeria,” IOP Conf. Ser. Mater. Sci. Eng., 413, no. 1, https://doi.org/10.1088/1757-899X/413/1/012039.
  9. Adetokun B. B. & Muriithi C. M., (2021). Impact of integrating large-scale DFIG-based wind energy conversion system on the voltage stability of weak national grids: A case study of the Nigerian power grid,” Energy Reports, 7, pp. 654–666, https://doi.org/10.1016/j.egyr.2021.01.025.
  10. Agung, I. G., Angga, G., Bellout, M., Strand, B., Per, K., & Strand, E. (2022). Effect of ­ CO 2 tax on energy use in oil production : waterflooding optimization under different emission costs. SN Applied Sciences. https://doi.org/10.1007/s42452-022-05197-4.
  11. Ajayi O. O., Fagbenle R. O., Katende J., Ndambuki J. M., Omole D. O., & Badejo A. A., (2014). Wind energy study and energy cost of wind electricity generation in Nigeria: Past and recent results and a case study for South West Nigeria, Energies, 7, no. 12, pp. 8508–8534, (2014), https://doi.org/10.3390/en7128508.
  12. Ajewole M. O., Owolawi P. A., Ojo J. S., & Oyedele O. M., (2019). Hybrid renewable energy system for 5G mobile telecommunication applications in Akure, Southwestern Nigeria,” J. Pure Appl. Phys., vol. 8, no. 1, p. 27, https://doi.org/10.4314/njpap.v8i1.4.
  13. Ajibola O. O. E. & Balogun O. J. (2019). Stochastic analysis of energy potentials of wind in Lagos metropolis, Notes Eng. Comput. Sci., vol. 2019-Octob, pp. 198–203, https://www.iaeng.org/publication/WCECS2019/WCECS2019_pp198-203.pdf.
  14. Akinbomi J., Brandberg T., Sanni S. A., & Taherzadeh M. J. (2014). Development and Dissemination Strategies for Accelerating Biogas Production in Nigeria, BioResources, 9, no. 3, pp. 5707–5737, https://doi.org/10.15376/biores.9.3.5707-5737.
  15. Akinbulire T. O., Oluseyi P. O., & Babatunde O. M., (2014). Techno-economic and environmental evaluation of demand side management techniques for rural electrification in Ibadan, Nigeria, J. Energy Environ. Eng., vol. 5, no. 4, pp. 375–385, https://doi.org/10.1007/s40095-014-0132-2.
  16. Akinyele D., Amole A., Olabode E., Olusesi A., & Ajewole T. (2021). Simulation and Analysis Approaches to Microgrid Systems Design : Emerging Trends and Sustainability Framework Application, Sustainability, 13, 11299. https://doi.org/10.3390/su132011299.
  17. AlHammadi A., Al-Saif N., Al-Sumaiti A. S., Marzband M., Alsumaiti T., & Heydarian-Forushani E. (2022). Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates, Energies, 15, no. 18, https://doi.org/10.3390/en15186621.
  18. Amole A. O., Akinyele D. O., Olabode O. E., Idogun O. O., Adeyeye A. O., & Olarotimi B. S. (2021). Comparative Analysis of Techno-Environmental Design of Wind and Solar Energy for Sustainable Telecommunications Systems in Different Regions of Nigeria, International Journal of Renewable Energy and Research, Vol. 11., No. 4, Pp: 1776 – 1792, https://doi.org/20508/ijrer.v11i4.12524.g8329.
  19. Amole A. O., Okelola M. O., & Amole G. O. (2020). Reliability Assessment of some Selected 11 kV Feeders within Ibadan Distribution Network, Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 6, no. 2, pp. 39–46, https://doi.org/10.26555/jiteki.v6i2.18970.
  20. Amupolo A., Nambundunga S., Chowdhury D. S. P., & Grün G. (2022). Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia,” Energies, 15, no. 12, https://doi.org/10.3390/en15124235.
  21. Anayochukwu A. V. & Onyeka A. E., (2014). Simulation of Solar-Photovoltaic Hybrid Power Generation System with Energy Storage and Supervisory Control for Base Transceiver Station ( BTS ) Site Located in Rural Nigeria, International Journal of Renewable Energy Research, vol. 4, 1, https://doi.org/10.20508/ijrer.v4i1.978.g6239.
  22. Arshad M. & O’kelly B. C. (2013). Offshore wind-turbine structures: A review, Inst. Civ. Eng. Energy, vol. 166, no. 4, pp. 139–152, https://doi.org/10.1680/ener.12.00019.
  23. Ashraf M. M, Abu Bakar Waqas A & Malik T. N. (2017). Grid Connected Wind Energy Conversion System for Peak Load Sharing Using Fuzzy Logic Controller, International Journal of Renewable Energy Research, Vol.7,4, Pp: 1767-1778, https://doi.org/10.20508/ijrer.v7i4.6254.g7217.
  24. Asif R. & Khanzada F. (2015). Cellular Base Station Powered by Hybrid Energy Options, J. Comput. Appl., vol. 115, no. 22, pp. 35–39, https://doi.org/10.5120/20286-2842.
  25. Attabo A. A., Ajayi O. O., & Oyedepo S. O. (2019). Wind energy generation from Nigeria continental shelf: A review, IOP Conf. Ser. Earth Environ. Sci., 331, no. 1, https://doi.org/10.1088/1755-1315/331/1/012019.
  26. Ayodele T. R., Ogunjuyigbe A. S. O., & Amusan T. O. (2016). Techno-economic analysis of utilizing wind energy for water pumping in some selected communities of Oyo State , Nigeria, Sustain. Energy Rev., vol. 91, no. (2016), pp. 335–343, 2018, https://doi.org/10.1016/j.rser.2018.03.026.

 

  1. Babatunde, O. M., Adedoja, O. S., Babatunde, D. E., & Denwigwe, I. H. (2019). Off-grid hybrid renewable energy system for rural healthcare centers: A case study in Nigeria. Energy Science and Engineering, 7(3), 676–693. https://doi.org/10.1002/ese3.314.
  2. Brimmo A. T., Sodiq A., Sofela S., & Kolo I. (2016). Sustainable energy development in Nigeria : Wind , hydropower , geothermal, Sustain. Energy Rev., vol. 74, no. pp. 474–490, 2017, https://doi.org/10.1016/j.rser.2016.11.162.
  3. Bukar A. L., Tan C. W., & Lau K. Y., (2019). Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm, Energy, vol. 188, no. March, pp. 685–696, https://doi.org/10.1016/j.solener.2019.06.050.
  4. Butt, R. Z., Kazmi, S. A. A., Alghassab, M., Khan, Z. A., Altamimi, A., Imran, M., & Alruwaili, F. F. (2022). Techno-Economic and Environmental Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Mid-Career Repowering Perspective. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052507.
  5. Chakraborty S, Dutta S., & Biswas N. (2011). A Review Paper of Wind Energy, Conf. Adv. Res. Electr. Syst. Technol., no. l, pp. 202–206, https://www.researchgate.net/publication/303736666_A_REVIEW_PAPER_0F_WIND_ENERGY.
  6. Chowdhury, T., Hasan, S., Chowdhury, H., Hasnat, A., Rashedi, A., Asyraf, M. R. M., Hassan, M. Z., & Sait, S. M. (2022). Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study. Energies, 15(16). https://doi.org/10.3390/en15165940.
  7. Dehkordi S. R. & Jahangiri M. (2022). Sensitivity Analysis for 3E Assessment of BIPV System Performance in Abadan in Southwestern Iran, Renew. Energy Environ., vol. 9, no. 1, pp. 1–12, https://doi.org/10.30501/jree.2021.262420.1173.
  8. Dioha M. O. & Kumar A., (2018). Rooftop solar PV for urban residential buildings of Nigeria: A preliminary attempt towards potential estimation, AIMS Energy, 6, no. 5, pp. 710–734, https://doi.org/10.3934/energy.2018.5.710.
  9. Diyoke C., Eja, L. E. & Chikwado U. K. (2022). Hydro Backed-up Hybrid Renewable System for Off-grid Power in Nigeria, American Journal of Electrical Power and Energy Systems, vol. 11, no. 2, pp. 31–47, https://doi.org/10.11648/j.epes.20221102.12.
  10. Energinet, (2015). Report - Technical Project Description for Offshore Wind Farms (200 MW) - Offshore Wind Farms at Vesterhav Norf, Vesterhav Syd, Saeby, Sejero Bugt, Smalandsfarvandet and Bornholm, no. 00 , pp. 1–73, https://docplayer.net/19063897-Technical-project-description-for-offshore-wind-farms-200-mw.html.
  11. Erixno O. & Rahim N. A. (2020). A techno-environmental assessment of hybrid photovoltaic-thermal based combined heat and power system on a residential home, Energy, vol. 156, pp. 1186–1202, https://doi.org/10.1016/j.renene.2020.04.101.
  12. EWEA, (2009). Executive Summary, Wind Energy – Facts, https://www.ewea.org/fileadmin/files/library/publications/reports/Offshore_Report_2009.pdf.
  13. Gabbar H. A., Abdussami M. R., & Adham M. I. (2020). Techno-economic evaluation of interconnected nuclear-renewable micro hybrid energy systems with combined heat and power, Energies, 13, no. 7, https://doi.org/10.3390/en13071642.
  14. Gbadamosi S. L. & Nwulu, N. I. (2022). Optimal Configuration of Hybrid Energy System for Rural Electrification of Community Healthcare Facilities, Sci. 12, 4262. https://doi.org/10.3390/ app12094262.
  15. Hamedani, S. R., Villarini, M., Colantoni, A., Carlini, M., Cecchini, M., Santoro, F., & Pantaleo, A. (2020). Environmental and economic analysis of an anaerobic co-digestion power plant integrated with a compost plant. Energies, 13(11). https://doi.org/10.3390/en13112724.
  16. Hosseini E., Behzadfar N., Hashemi M., Moazzami M., & Dehghani M., (2022). Control of Pitch Angle in Wind Turbine Based on Doubly Fed Induction Generator, Journal of Renewable of Energy and Environment, vol. 9, no. 2, pp. 1–7, https://doi.org/10.30501/jree.2021.293546.1226.
  17. Hosseinian Y. H., Shahnia F., & Islam S. M. (2016). Disconnection of single-phase rooftop PVs after short-circuit faults in residential feeders, J. Electr. Electron. Eng., vol. 13, no. 2, pp. 151–165, https://doi.org/10.1080/1448837X.2016.1221637.
  18. Hosseinpour S., Hosseini S. A., Mehdipour R., Hemmasi A. H., & Ozgoli H. A. (2020). Energy Modeling and Techno-Economic Analysis of a Biomass Gasification-CHAT-ST Power Cycle for Sustainable Approaches in Modern Electricity Grids, Ir, vol. 7, no. 2, pp. 43–51, [Online]. Available: http://www.jree.ir/article_106780.html.
  19. Ijeoma V. (2012). Renewable energy potentials in Nigeria, 'IAIA12 Conference Proceedings' 32nd Annual Meeting of the International Association for Impact Assessment 27 May- 1 June (2012), Centro de Congresso da Alfândega, Porto - Portugal (www.iaia.org) pp. 1–6, https://conferences.iaia.org/2012/pdf/uploadpapers/Final%20papers%20review%20process/Vincent-Akpu,%20Ijeoma.%20%20Renewable%20energy%20potentials%20in%20Nigeria.pdf.
  20. Imam A. A., Al-Turki Y. A., & Kumar R. S., (2020). Techno-economic feasibility assessment of grid-connected PV systems for residential buildings in Saudi Arabia-A case study, , vol. 12, no. 1, https://doi.org/10.3390/su12010262.
  21. Izelu C. O., Agberegha O. L., & Oguntuberu O. B., (2013). Wind energy conversion system for electrical power generation in UNIPORT and UPTH, port harcourt, rivers state, Nigeria, J. Renew. Energy Res., vol. 3, no. 3, pp. 615–626, https://doi.org/10.20508/ijrer.49835.
  22. Jahid A., Hossain M. S., Monju M. K. H., Rahman M. F., & Hossain M. F., (2020). Techno-Economic and Energy Efficiency Analysis of Optimal Power Supply Solutions for Green Cellular Base Stations, IEEE Access, 8, pp. 43776–43795, (2020), https://doi.org/10.1109/ACCESS.2020.2973130.
  23. Jamil M., Kirmani S., & Rizwan M., (2012). Techno-Economic Feasibility Analysis of Solar Photovoltaic Power Generation: A Review, Smart Grid Renew. Energy, 03, no. 04, pp. 266–274, https://doi.org/10.4236/sgre.2012.34037.
  24. Jayswal G., (2017). Techno-Economic and Environmental Analysis of Wind-Diesel Power System, International Journal of Trend in Scientific Research and Development, Volume 1(4), (2017), ISSN: 2456-6470, pp. 369–374, https://doi.org/10.31142/ijtsrd157.
  25. Jumare I. A., Bhandari R., & Zerga A., (2020). Assessment of a decentralized grid-connected photovoltaic (PV) / wind / biogas hybrid power system in northern Nigeria, Sustain. Soc., vol. 10, no. 1, pp. 1–25, https://doi.org/10.1186/s13705-020-00260-7.
  26. Kitindi E. J., (2021). Techno-Economic and Environmental Analysis for Off-Grid Mobile Base Stations Electrification with Hybrid Power System in Tanzania, Ijarcce, 10, no. 4, pp. 47–60,, https://doi.org/10.17148/ijarcce.2021.10408.
  27. Kumar A., Khan M. Z. U., & Pandey B., (2018). Wind Energy: A Review Paper, Gyancity J. Eng. Technol., 4, no. 2, pp. 29–37, https://doi.org/10.21058/gjet.2018.42004.
  28. Kumar G., Sarkar A., Ley C., & Matsagar V., (2021). Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index, Energy, vol. 171, pp. 902–914, https://doi.org/10.1016/j.renene.2021.02.141.
  29. Kumar M., (2020). Social, Economic, and Environmental Impacts of Renewable Energy Resources, Wind Sol. Hybrid Renew. Energy Syst. [Working Title], pp. 1–11, https://doi.org/10.5772/intechopen.89494.
  30. Kumar N. M., Vishnupriyan J., & Sundaramoorthi P., (2019). Techno-economic optimization and real-time comparison of sun tracking photovoltaic system for rural healthcare building, Renewable Sustainable Energy, 11, 015301, https://doi.org/10.1063/1.5065366.
  31. Lop´ez-Guevara J. A., del Puerto-Flores d., Zuniga P., & Barocio E., (2020). Power-Scale Emulator Design of a DFIG-Based Variable Speed Wind Turbine. Memorias del Congreso Nacional de Control Automático ISSN: 2594-2492, http://www.amca.mx/RevistaDigital/cnca2020/pdf/0049_FI.pdf.
  32. Lubritto, C., Petraglia, A., Vetromile, C., Curcuruto, S., Logorelli, M., Marsico, G., & D’Onofrio, A. (2011). Energy and environmental aspects of mobile communication systems. Energy, 36(2), 1109–1114. https://doi.org/10.1016/j.energy.2010.11.039.
  33. Mahat, P. (2006). Optimal placement of wind turbine DG in primary distribution systems for real loss reduction. Proceedings of Energy for, 4. http://www.aseanenergy.info/Abstract/33005492.pdf.
  34. Makinde K. A, Akinyele D. O., & Amole A. O. (2021). Voltage Rise Problem in Distribution Networks with Distributed Generation : A Review of Technologies , Impact and Mitigation Approaches, Indonesian Journal of Electrical Engineering and Informatics vol. 9, 3, pp. 575–600, (2021), https://doi.org/10.52549/ijeei.v9i3.2971.
  35. Makinde K. A., Adewuyi O. B., Amole A. O., & Adeaga O. A., (2021). Design of Grid-connected and Stand-alone Photovoltaic Systems for Residential Energy Usage: A Technical Analysis,” Energy Res. Rev., vol. 8, no. 1, pp. 34–50, (2021), https://doi.org/10.9734/jenrr/2021/v8i130203.
  36. Masrur H.,. Howlader H. O. R, Lotfy M. E., Khan K. R., Guerrero J. M., & Senjyu T., (2020). Analysis of techno-economic-environmental suitability of an isolated microgrid system located in a remote island of Bangladesh,” , vol. 12, no. 7, (2020), https://doi.org/10.3390/su12072880.
  37. Mazzeo D., Matera N., De Luca P., Baglivo C., Congedo P. M., & Oliveti G., (2021). A literature review and statistical analysis of photovoltaic-wind hybrid renewable system research by considering the most relevant 550 articles: An upgradable matrix literature database, Clean. Prod., vol. 295, p. 126070, https://doi.org/10.1016/j.jclepro.2021.126070.
  38. Mehbodniya A., A. Paeizi A, Rezaie M., Azimian M., Masrur H., & Senjyu T., (2022). Active and Reactive Power Management in the Smart Distribution Network Enriched with Wind Turbines and Photovoltaic Systems, , vol. 14, no. 7, https://doi.org/10.3390/su14074273.
  39. Ndukwe C., Iqbal T., Liang X., & Khan J., (2019). Optimal Sizing and Analysis of a Small Hybrid Power System for Umuokpo Amumara in Eastern Nigeria,” J. Photoenergy, vol. 2019, no. i, https://doi.org/10.1155/2019/6960191.
  40. Nyeche E. N. & Diemuodeke E. O., (2019). Modelling and Optimisation of a Hybrid PV-Wind Turbine-Pumped Hydro Storage Energy System for Mini-Grid Application in Coastline Communities, Clean. Prod., https://doi.org/10.1016/j.jclepro.2019.119578.
  41. Odekanle E. L., Odejobi O. J., Dahunsi S. O., & Akeredolu F. A., (2020). Potential for cleaner energy recovery and electricity generation from abattoir wastes in Nigeria, Energy Reports, 6, pp. 1262–1267, https://doi.org/10.1016/j.egyr.2020.05.005.
  42. Ohiero P. O., Odey P. O., & Ukang J. U., (2018). Design and Evaluation of Solar – Pumped Storage hybrid Power System for Rural Communities in Nigeria, International Research Journal of Engineering and Technology (IRJET), https://www.irjet.net/archives/V5/i7/IRJET-V5I7449.pdf, pp. 2263–2269.
  43. Ohunakin O. S., Oyewola O. M., & Adaramola M. S., (2013). Economic analysis of wind energy conversion systems using levelized cost of electricity and present value cost methods in Nigeria, International Journal of Energy and Environmental Engineering, 4:2, pp. 2–9 http://www.journal-ijeee.com/content/4/1/2.
  44. Ohunakin S. O., Ojolo S. J., Ogunsina S. B., & Dinrifo R. R., (2012). Analysis of cost estimation and wind energy evaluation using wind energy conversion systems ( WECS ) for electricity generation in six selected high altitude locations in Nigeria, Energy Policy, 48, pp. 594–600, https://doi.org/10.1016/j.enpol.2012.05.064.
  45. Okakwu I. K., Alayande A. S., Akinyele D. O., Olabode O. E., & Akinyemi J. O., (2022). Effects of total system head and solar radiation on the techno-economics of PV groundwater pumping irrigation system for sustainable agricultural production, African, vol. 16, no. April, p. e01118, https://doi.org/10.1016/j.sciaf.2022.e01118.
  46. Okundamiya M. S., Emagbetere J. O., & Ogujor E. A., (2014). Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector,” World J., vol. 2014, https://doi.org/10.1155/2014/947281.
  47. Oladigbolu J. O., Ramli M. A. M., & Al-Turki Y. A., (2019). Techno-economic and sensitivity analyses for an optimal hybrid power system which is adaptable and effective for rural electrification: A case study of Nigeria,” , vol. 11, no. 18, https://doi.org/10.3390/su11184959.
  48. Oladigbolu, J. O., Al-turki, Y. A., & Olatomiwa, L. (2021). Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alexandria Engineering Journal, 60(6), 5547–5565. https://doi.org/10.1016/j.aej.2021.04.042.
  49. Olalekan Idris W., Ibrahim M. Z., & Albani A., (2020). The status of the development of wind energy in nigeria,” Energies, 13, no. 23, pp. 1–16, (2020), https://doi.org/10.3390/en13236219.
  50. Olatomiwa L, Blanchard R, Mekhilef S., & Akinyele D., (2018). Hybrid renewable energy supply for rural healthcare facilities : An approach to quality healthcare delivery,” Energy Technol. Assessments, vol. 30, no. August, pp. 121–138, https://doi.org/10.1016/j.seta.2018.09.007.
  51. Olujobi O. J., Ufua, D. E., Olokundun M & Olujobi, M. (2022). Conversion of organic wastes to electricity in Nigeria : legal perspective on the challenges and prospects. International Journal of Environmental Science and Technology, 19(2), 939–950. https://doi.org/10.1007/s13762-020-03059-3.
  52. Peloriadi K., Iliadis P., Boutikos P., Atsonios K., Grammelis P., & Nikolopoulos A., (2022). Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study, Energies, 15, no. 11, pp. 1–20, https://doi.org/10.3390/en15113892.
  53. Peña Sánchez E. U., Ryberg S. D., Heinrichs H. U., Stolten D., & Robinius M., (2021). The potential of variable renewable energy sources in mexico: A temporally evaluated and geospatially constrained techno-economical assessment, Energies, 14, no. 18, https://doi.org/10.3390/en14185779.
  54. Pham T. D., & Shin H., (2020). The effect of the second-order wave loads on drift motion of a semi-submersible floating offshore wind turbine, Mar. Sci. Eng., vol. 8, no. 11, pp. 1–13, https://doi.org/10.3390/jmse8110859.
  55. Pritesh P. S., Anant P. & Ajit S., (2016). Solar-Wind Hybrid Energy Generation System, International Journal of Engineering Research and General Science, Vol. 4, Issue 2, ISSN 2091-2730, http://pnrsolution.org/Datacenter/Vol4/Issue2/75.pdf.
  56. Rohan K. Tim S., & Peter K. S., (2016). Large-scale offshore wind energy installation in northwest India: Assessment of wind resource using Weather Research and Forecasting and levelized cost of energy, Wind Energy, pp; 1–19, https://doi.org/10.1002/we.2566
  57. Salih, T., Wang, Y., & Adam, M.A.A., (2014). Renewable micro hybrid system of solar panel and wind turbine for telecommunication equipment in remote areas in Sudan, Energy Procedia 61, 80–83, https://doi.org/10.1016/j.egypro.2014.11.911.
  58. Stoyanov, L., Bachev, I., Zarkov, Z., Lazarov, V., & Notton, G. (2021). Multivariate analysis of a wind–pv‐based water pumping hybrid system for irrigation purposes. Energies, 14(11), 1–28. https://doi.org/10.3390/en14113231.
  59. Teo Y. L. & Go Y. I., (2021). Techno-economic-environmental analysis of solar/hybrid/storage for vertical farming system: A case study, Malaysia, Energy Focus, vol. 37, no. June, pp. 50–67, https://doi.org/10.1016/j.ref.2021.02.005.
  60. Uguru-Okorie D. C, Kuhe A & Ikpotokin I., (2015). Stand-alone wind energy systems for power generation in Nigeria, International Journal of Advanced Information Science and Technology (IJAIST), ISSN: 2319:2682 vol. 4, 6, pp. 56–65, (2015), https://doi.org/10.15693/ijaist/2015.v4i6.56-65.
  61. Vales, Z. A. & Soares, J. (2020). Overview of Applications in Power and Energy Systems. Applications of Modern Heuristic Optimization Methods in Power and Energy Systems, 1(1), 21–37. https://doi.org/10.1002/9781119602286.ch2
  62. Vorpahl F., Schwarze , Fischer T., Seidel M., & Jonkman J., (2013). Offshore wind turbine environment, loads, simulation, and design, Wiley Interdiscip. Rev. Energy Environ., vol. 2, no. 5, pp. 548–570, https://doi.org/10.1002/wene.52.
  63. Wu, J., & Re, J. (2012). Research and Application of Solar Energy Photovoltaic-Thermal Technology. Solar Power, (2012). https://doi.org/10.5772/27897.
  64. Yang, X., Wang, Z., Zhang, H., Ma, N., Yang, N., Liu, H., Zhang, H., & Yang, L. (2022). A Review: Machine Learning for Combinatorial Optimization Problems in Energy Areas. Algorithms, 15(6), 205. https://doi.org/10.3390/a15060205.
  65. Zhang A., Zhang H., Qadrdan M., Yang W., Jin X., & Wu J., (2019). Optimal planning of integrated energy systems for offshore oil extraction and processing platforms,” Energies, 12, no. 4, https://doi.org/10.3390/en12040756.