Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yazd University, Yazd, Iran.

2 Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

3 Department of BioSystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Abstract

Paraffin waxes are widely used as commercial organic heat storage phase changes (PCM) for many applications due to their suitable properties. Significant heat from fusion, nonpoisonous and stable properties, no phase separation, and the phase process result in a small volume change. Meanwhile, they are subject to low thermal conductivity. The thermal conductivity of PCMs can be increased by different techniques such as the use of dispersion of particles or nanomaterials with high conductivity in PCM and the use of metal foams. The use of nanoparticles has such disadvantages as high cost and particle deposition after various cycles. Hence, in this study, some experiments were carried out to investigate the effect of porous media like copper foam and iron wool as the filler instead of nanomaterials on improving the heat conductivity of PCM. The results show that the porous foam increases the heat transfer and during the charging operation, the temperature of the porous plate wall increases continuously at the same rate as the paraffin. At 2400 s, the temperature of pure PCM, iron wool, and copper foam reaches 67.3, 72.5, and 73.27℃, respectively. The optimal mode is the one in which the copper absorber plate is connected to the copper foam, thus reducing the charging time by 600 s compared to pure PCM and saving 75% of energy. Connecting the copper absorber plate to the iron wool has a good thermal performance and stores 70.83% of energy. Thus, iron wool has an acceptable performance and is suitable for storage systems.

Keywords

Main Subjects

  1. Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4), 313-332. https://doi.org/10.1016/0038-092X(83)90186-X
  2. Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and sustainable energy reviews, 14(2), 615-628. https://doi.org/10.1016/j.rser.2009.10.015
  3. Ali, H. M., Janjua, M. M., Sajjad, U., & Yan, W. M. (2019). A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 135, 649-673. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001
  4. Ali, H. M., & Arshad, A. (2017). Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. International Journal of Heat and Mass Transfer, 112, 649-661. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.004
  5. Ali, H. M. (2020). Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics. International Journal of Heat and Mass Transfer, 146, 118852. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118852
  6. Arshad, A., Ali, H. M., Khushnood, S., & Jabbal, M. (2018). Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. International Journal of Heat and Mass Transfer, 117, 861-872. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008
  7. Arshad, A., Ali, H. M., Ali, M., & Manzoor, S. (2017). Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Applied Thermal Engineering, 112, 143-155. https://doi.org/10.1016/j.applthermaleng.2016.10.090
  8. Babapoor, A., & Karimi, G. (2015). Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 90, 945-951. https://doi.org/10.1016/j.applthermaleng.2015.07.083
  9. Baby, R., & Balaji, C. (2013). Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink. International Communications in Heat and Mass Transfer, 46, 27-30. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.018
  10. Barghi Jahromi, M., Kalantar, V., & Abdolrezaie, M. (2020). Experimental Study of Effect of Storage Phase Change Materials (PCM) on the Function of a Passive Solar Ventilator. Modares Mechanical Engineering, 20(7), 1709-1717.  http://mme.modares.ac.ir/article-15-38118-en.html
  11. Bahari, M., Najafi, B., & Babapoor, A. (2020). Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer. Journal of Energy Storage, 28, 101181. https://doi.org/10.1016/j.est.2019.101181
  12. Bhardwaj, A. K., Kumar, R., Kumar, S., Goel, B., & Chauhan, R. (2021). Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM. Sustainable Energy Technologies and Assessments, 45, 101119. https://doi.org/10.1016/j.seta.2021.101119
  13. Brahim, N. I., Al-Sulaiman, F. A., Rahman, S., Yilbas, B. S., & Sahin, A. Z. (2017). Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews, 74, 26-50. https://doi.org/10.1016/j.rser.2017.01.169
  14. Chen, P., Gao, X., Wang, Y., Xu, T., Fang, Y., & Zhang, Z. (2016). Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage. Solar Energy Materials and Solar Cells, 149, 60-65. https://doi.org/10.1016/j.solmat.2015.12.041
  15. Cui, H. T. (2012). Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam. Applied thermal engineering, 39, 26-28. https://doi.org/10.1016/j.applthermaleng.2012.01.037
  16. Dincer, I., & Rosen, M. A. (2021). Thermal energy storage: systems and applications. John Wiley & Sons. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=I.+Dincer+and+M.+A.+Rosen%2C+Thermal+energy+storage+systems+and+applications.+John+Wiley+%26+Sons%2C+2021.&btnG=
  17. Ebrahimi, H., Akhijahani, H. S., & Salami, P. (2021). Improving the thermal efficiency of a solar dryer using phase change materials at different position in the collector. Solar Energy, 220, 535-551. https://doi.org/10.1016/j.solener.2021.03.054
  18. Huang, X., Lin, Y., Alva, G., & Fang, G. (2017). Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells, 170, 68-76. https://doi.org/10.1016/j.solmat.2017.05.059
  19. Iranmanesh, M., Akhijahani, H. S., & Jahromi, M. S. B. (2020). CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy, 145, 1192-1213. https://doi.org/10.1016/j.renene.2019.06.038
  20. Jahromi, M. S. B., Kalantar, V., Akhijahani, H. S., & Kargarsharifabad, H. (2022). Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. Journal of Energy Storage, 51, 104434. https://doi.org/10.1016/j.est.2022.104434
  21. Jin, H. Q., Fan, L. W., Liu, M. J., Zhu, Z. Q., & Yu, Z. T. (2017). A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam: Effects of the pore size. International Journal of Heat and Mass Transfer, 112, 39-44. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.114
  22. Kumar, N., & Gupta, S. K. (2021). Progress and application of phase change material in solar thermal energy: An overview. Materials Today: Proceedings, 44, 271-281. https://doi.org/10.1016/j.matpr.2020.09.465
  23. Li, W. Q., Qu, Z. G., He, Y., & Tao, W. (2012). Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Applied Thermal Engineering, 37, 1-9. https://doi.org/10.1016/j.applthermaleng.2011.11.001
  24. Li, T. X., Wu, D. L., He, F., & Wang, R. Z. (2017). Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 115, 148-157. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.056
  25. Mancin, S., Diani, A., Doretti, L., Hooman, K., & Rossetto, L. (2015). Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. International Journal of Thermal Sciences, 90, 79-89. https://doi.org/10.1016/j.ijthermalsci.2014.11.023
  26. Marri, G. K., & Balaji, C. (2021). Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink. International Journal of Heat and Mass Transfer, 164, 120454. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120454
  27. Matofali, A. X., & Massawe, E. S. (2016). Investigation of effect of rock storage system parameters on thermal cooling performance. https://article.sciencepublishinggroup.com/html/10.11648.j.acm.20160501.12.html
  28. Nie, C., Liu, J., & Deng, S. (2021). Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 165, 120652. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120652
  29. Shalaby, S. M., & Bek, M. A. (2015). Drying nerium oleander in an indirect solar dryer using phase change material as an energy storage medium. Journal of Clean Energy Technologies, 3(3), 176-180. 7763/JOCET.2015.V3.191
  30. Usman, H., Ali, H. M., Arshad, A., Ashraf, M. J., Khushnood, S., Janjua, M. M., & Kazi, S. N. (2018). An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat and Mass Transfer, 54, 3587-3598. https://doi.org/10.1007/s00231-018-2389-0
  31. Wang, Z., Zhang, Z., Jia, L., & Yang, L. (2015). Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Applied Thermal Engineering, 78, 428-436. https://doi.org/10.1016/j.applthermaleng.2015.01.009
  32. Xie, B., Cheng, W. L., & Xu, Z. M. (2015). Studies on the effect of shape-stabilized PCM filled aluminum honeycomb composite material on thermal control. International Journal of Heat and Mass Transfer, 91, 135-143. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.108
  33. Zhao, C. Y., Lu, W., & Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar energy, 84(8), 1402-1412. https://doi.org/10.1016/j.solener.2010.04.022
  34. Zhang, P., Meng, Z. N., Zhu, H., Wang, Y. L., & Peng, S. P. (2017). Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Applied Energy, 185, 1971-1983. https://doi.org/10.1016/j.apenergy.2015.10.075
  35. Zhu, C., Ran, F., & Fang, G. (2020). Thermal properties improvement of lauric acid/iron foam composites with graphene nanoplates as thermal energy storage materials. Journal of Energy Storage, https://doi.org/10.1016/j.est.2019.101163