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A B S T R A C T  

 

The power generation sector accounts for a significant portion of GHG emissions, and many countries strive for 

the large-scale adoption of renewable generation. Although the intermittent nature of renewables brings about 

complications in energy system planning, the share of renewable generations is increasing to the greatest extent. 
The wind generation has drawn increasing attention to expanding the use of renewable energy to reduce carbon 

emissions from the power generation sector, and the estimation of capacity factor is crucial in energy system 

modeling. This study develops a mathematical model for estimating the capacity factor of a wind farm with the 
consideration of outage probability of individual turbines. In addition, the power curves and wind speed 

distribution of the wind farm need to be estimated, which is demonstrated with a wind farm in Korea. It is 

asserted that the proposed method may render the wind farm capacity factor effectively. Thus, the results from 

this study can be useful for energy system modeling involving wind generations. 

https:/doi.org/10.30501/jree.2023.365104.1468  

1. INTRODUCTION1 

Defined by the ratio of actual output over a given period of 

time to the rated nameplate capacity over that period, the 

capacity factor (CF) is considered one of the most important 

measures in wind power generation and its estimation has been 

under focused investigation over the past decades. The 

estimation of CF has received significant attention in order to 

cluster wind turbines or a wind farm even though the derivation 

of CF for individual wind turbines may be investigated (Dhople 

& Domínguez-García, 2012; Larsen & Rez ,2017; Sulaeman et 

al., 2017) . It is well known that the incident wind speed plays 

a decisive role in the CF estimation. In addition, acquisition of 

meaningful sample data for individual wind turbines required 

to assess the variations in wind speed may not be viable mainly 

due to the lack of spatiotemporal resolution. Sulaeman et al. 

(2017) argued that the outputs of individual wind turbines could 

not be modeled as independent random variables and a cluster 

of turbines needs to be combined into a single equivalent multi-

state unit to account for the correlation among turbines, output 

variability, and forced outages. Recent studies of Larsen & Rez 

(2017) and Sulaeman et al. (2017) have explored the CF 

estimation and its reliability for a wind farm (not a wind 

turbine) to provide a higher resolution in order to assess the 

uncertainty assessment of wind speed data. As proposed in 

Dhople & Domínguez-García (2012), the power curve of a 

wind farm could be be derived from a simple average of power 

curves of individual wind turbines and the CF is estimated on 
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the basis of Weibull wind speed distributions. Findings in 

Dhople & Domínguez-García (2012) indicate that the impacts 

of planned and forced outages are not properly addressed, and 

the CF estimation was conducted in Larsen & Rez (2017) by 

taking into account the outage probability (or outage rate) of 

individual wind turbines. However, it was assumed that the 

rated capacity and the outage probability were identical for all 

wind turbines belonging to the same wind farm, which might 

limit its applicability to the CF estimation of wind farms.  

This study intends to develop a mathematical model for CF 

estimation of wind farms consisting of multiple wind turbines 

featuring different operating characteristics, namely rated 

capacity and outage probability. The main input parameters 

include the wind speed distribution of wind farm site, power 

curve, rated capacity, and outage rate of individual wind 

turbines. To the best of authors’ knowledge, this study is the 

first attempt to derive the outage probability of wind farms from 

those of individual turbines on the basis of probability 

modeling. The remainder of this paper is organized as follows. 

First, the derivation of outage probability for wind farms 

consisting of multiple wind turbines with different rated 

capacities is discussed. Then, the probability model for CF 

estimation of wind farms is developed, which is followed by 

the case study of Hankyung wind farm in the Republic of Korea 

to demonstrate the applicability of the proposed model. Brief 

conclusions follow in the last section. 
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2. DEVELOPMENT OF OUTAGE PROBABILITY OF WIND 
FARMS 

System reliability is defined as the probability that the 

system will continue to perform its intended function for a 

certain period of time under stated conditions (Ayoub, 2020), 

and the reliability of wind turbines is largely determined by the 

frequency and duration of planned and forced outages. The 

outage probability 𝑞  is simply defined as the proportion of 

downtime, 𝑞 =  downtime/(uptime + downtime) (Billinton 

et al., 1982; Pérez et al., 2013). Thus, the annual outage 

probability is the total downtime measured in hour divided by 

8,760 hours (24 hours/day × 365 days). It is intuitive that the 

planned outages need to be scheduled in advance for 

maintenance purposes with the consideration of electricity 

demand. Depending upon system specification, rated capacity, 

and operating environment, on the other hand, the frequency 

and duration of forced outages greatly differ from one wind 

turbine to another. Although determining the precise 

mechanism of forced outages can be elusive, mainly due to 

excessive variations in plant operations stemming from the 

intermittent nature of wind generation, forced outages for 

individual wind turbines have been assessed by considering 

individual component failures encountered in the past studies 

of Pérez et al. (2013) and Pfaffel et al. (2017). By compiling the 

data of planned and forces outages for individual wind turbines, 

the probability of wind turbine outages can easily be derived. 

For example, Table 1 presents the outage probability of wind 

turbines in one of the wind farms in Korea. There are 8 wind 

turbines with the total rated capacity of 19.5MW in the wind 

farm, three 1.5MW turbines, and five 3.0MW turbines, and it is 

clear that the outage probability of individual wind turbines 

differs to a great extent, ranging from 0.0071 to 0.1267. It is 

noted that the average outage probability of wind turbines is 

0.040, which coincides with the usual outage probability of 

0.04 ~ 0.12, as reported in Sulaeman et al. (2017) and Pfaffel et 

al. (2017). Presented are the mean time to failure (MTTF) and 

mean time to repair (MTTR) in Table 1, which can also be used 

to obtain the outage probability as 𝑞 =  MTTR/(MTTF +
MTTR) (Billinton et al., 1982). 

Table 1. Outage Probability of Individual Wind Turbines at a Wind Farm 

Wind Turbine Downtime (Hour) Uptime (Hour) Outage Probability Outage Frequency MTTF MTTR 

A 507 16,293 0.030 26 627 20 

B 2,129 14,671 0.127 28 524 76 

C 949 15,851 0.056 27 587 35 

D 119 16,681 0.007 8 2,085 15 

E 203 16,597 0.012 9 1,844 23 

F 960 15,840 0.057 15 1,056 64 

G 281 16,519 0.017 18 918 16 

H 180 16,620 0.011 16 1,039 11 

Average 666 16,134 0.040 18.4 1,085 32 

Based on the outage probability of individual wind turbines 

shown in Table 1, the probability distribution function of 

outage capacity in a wind farm is derived. Assuming that there 

are 𝑛 wind turbines in the wind farm where the state of each 

turbine is either ‘UP’ or ‘DOWN’, the number of possible 

combinations is 2𝑛 to describe the operation of the wind farm. 

It is further assumed that the state of a wind turbine is 

independent of others. Let 𝑋  denote the random variable 

designating the total outage capacity of wind farm at a given 

time point, and its cumulative distribution function can be 

obtained by solving the recursive formula given in Equation (1) 

(Billinton & Allan, 1996).  

𝑂𝐶𝑖(𝑥) = 𝑂𝐶𝑖−1(𝑥) ∙ (1 − 𝑞𝑖) + 𝑂𝐶𝑖−1(𝑥 − 𝑅𝐶𝑖) ∙ 𝑞𝑖,    

for 𝑖 = 1, 2, …  𝑛 (1)  

where the subscript 𝑖 designates individual wind turbines, 

𝑅𝐶𝑖 and 𝑞𝑖 denote the rated capacity and outage probability of 

the turbine 𝑖, respectively, and 𝑂𝐶𝑖(𝑥) is the probability that 𝑋 

is greater than or equal to 𝑥 with Turbine 1 through 𝑖. It should 

be noted that 𝑂𝐶0(𝑥) = 1 if 𝑥 ≤ 0 and 𝑂𝐶0(𝑥) = 0 otherwise. 

Solving the recursive formula in the case of Turbines 1 to 𝑛 

yields the cumulative distribution of the total outage capacity 

of the wind farm, i.e., 𝑃(𝑋 ≤ 𝑥) = 1 − 𝑂𝐶𝑛(𝑥). If both the 

rated capacity and the outage probability are constant and 

denoted by 𝑅𝐶 and 𝑞, respectively, for all the wind turbines, the 

cumulative distribution can easily be derived in a closed form 

since the number of turbines in outage follows the binomial 

distribution with parameters of 𝑛  and 𝑞 . The cumulative 

distribution function of outage capacity in the wind farm can 

now be written as follows: 

𝑃(𝑋 ≤ 𝑥) = ∑ (
𝑛
𝑘

) 𝑞𝑘(1 − 𝑞)𝑛−𝑘
⌊

𝑥

𝑅𝐶
⌋

𝑘=0   

                   = 𝐼1−𝑞 (𝑛 − ⌊
𝑥

𝑅𝐶
⌋ , ⌊

𝑥

𝑅𝐶
⌋ + 1)  

                   = (𝑛 − ⌊
𝑥

𝑅𝐶
⌋) (

𝑛

⌊
𝑥

𝑅𝐶
⌋) ∫ 𝑡𝑛−⌊

𝑥

𝑅𝐶
⌋−1(1 − 𝑡)⌊

𝑥

𝑅𝐶
⌋𝑑𝑡

1−𝑞

0
  

where ⌊𝑎⌋ denotes the greatest integer less than or equal to 𝑎.  

Supposing that the outage probability is 0.08 across 8 wind 

turbines and solving the recursive formula in Equation (1), the 

probability mass and cumulative distribution of outage capacity 

of the wind farm described in Table 1 are derived and depicted 

as bar and solid line in Figure 1, respectively, and its mean and 

standard deviation are 0.78MW and 1.41MW, respectively. 

Figure 2 compares the cumulative probability of outage 

capacity in the wind farm at different values of turbine outage 

probability (i.e., 0.04, 0.08, and 0.12). It is observed that the 

total outage capacity of the wind farm tends to increase as the 

outage probability of individual turbines increases. In addition, 

the totatl outage capacity of wind farms can easily be obtained 

for different probabilities of individual turbine outages. 
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Figure 1. Probability Mass and Cumulative Probability of Outage 

Capacity in the Wind Farm with the Outage Probability of 0.08 

 

Figure 2. Cumulative Probability of Outage Capacity in the Wind 

Farm for Different Values of Turbine Outage Probability 

3. METHOD 
A proper assessment of CF is critical to estimate the power 

output in energy system modeling involving renewable 

generations, mainly due to their intermittent nature (Paik et al., 

2021). The CF of wind generation may be calculated based on 

the historical data of power production (Söder et al., 2020), and 

Figure 3 depicts the nation-wide CF of Korea, the CF of 

Hankyung wind farm, and the CF of the wind turbine #9 in 

Hankyung wind farm month by month, displaying a certain 

degree of variations. 

 

Figure 3. Monthly Capacity Factors of Wind Turbine, Wind Farm, 

Nation-Wide Consideration 

The actual power output of wind generation is determined 

by the availability of individual turbines, which can be affected 

by environmental factors such as wind direction and speed, in 

addition to their potential output. In particular, the wind speed 

decisively affects the power output and it is generally modeled 

as a continuous random variable because of its high inherent 

variability. Affected by the planned and forced outages of 

individual turbines, the turbine availability in the same wind 

farm may also fluctuate to some degree. Thus, the CF of the 

wind farm having a multitude of turbines is defined by the 

expected output divided by the total rated capacity (Ditkovich 

& Kuperman, 2014). The total rated capacity, denoted by 

𝑅𝐶𝑇𝑜𝑡𝑎𝑙 , is simply the sum of rated capacities of individual 

turbines in the wind farm, i.e., 𝑅𝐶𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑅𝐶𝑘
𝑛
𝑘=1 . By 

denoting the wind farm power output as the random variable 

PW, we can express the expected power output as follows: 

𝐸(𝑃𝑊) = ∑ 𝐸(𝑃𝑊|𝑋 = 𝑥) ∙ 𝑃(𝑋 = 𝑥)∀𝑥             (2) 

where 𝑃(𝑋 = 𝑥) is the probability mass function of outage 

capacity in the wind farm and 𝐸(𝑃𝑊|𝑋 = 𝑥) is the conditional 

expectation of wind farm power output given that 𝑋 = 𝑥 . 

Although the power output of wind farms is influenced by 

various factors such as wind speed, wind direction, and turbine 

parameters, it is common to use the power curve based solely 

on wind speed for projections (Cooperman & Martinez, 2015; 

Sohoni et al., 2016). A typical power curve of wind turbines is 

depicted in Figure 4, which is divided into 4 regions depending 

on wind speed. No power is generated below the cut-in speed 

in Region 1 and above the cut-off speed in Region 4. The power 

output increases up to the rated power from the cut-in to rated 

speed in Region 2, while the rated power output is maintained 

between the rated and cut-off speeds in Region 3. 

 

Figure 4. Typical Power Curve of Wind Turbines 

The power curve may have a different form for individual 

wind turbines and the conditional expectation of power output 

is obtained with the power curves of turbines under operation 

for the specified outage capacity. However, it can be highly 

complicated or infeasible to get the conditional expectation for 

all the possible combinations of outage capacity since the 

turbines with different rated capacities may be in the outage 

state. It is proposed to develop the power output per unit 

capacity by taking the weighted average of power output of 

individual turbines as follows: 

𝑔(𝑣) = ∑ 𝛼𝑖𝑔𝑖(𝑣)𝑖 = ∑
𝑅𝐶𝑖

𝑅𝐶𝑇𝑜𝑡𝑎𝑙
𝑔𝑖(𝑣)𝑖 = ∑ (

𝑅𝐶𝑖

∑ 𝑅𝐶𝑗𝑗
) 𝑔𝑖(𝑣)𝑖   (3) 

where  𝑔(𝑣)  and 𝑔𝑖(∙)  represent the power curve per unit 

capacity and the power curve of turbine 𝑖  in the wind farm, 

respectively, and 𝛼𝑖 denotes the weight of individual turbines. 

It is noted that the proportion of the rated capacity of individual 

turbines is used as the weight. Then, the conditional expectation 

in Equation (2) may be obtained by multiplying the rate 

capacity of turbines under operation, i.e., (𝑅𝐶𝑇𝑜𝑡𝑎𝑙 − 𝑥), by the 

expected power output per unit capacity in the wind farm, 

which can be determined by integrating the power curve per 
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unit capacity over the wind speed distribution in the wind farm 

site. The conditional expectation in Equation (2) can now be 

written as follows: 

𝐸(𝑃𝑊|𝑋 = 𝑥) = (𝑅𝐶𝑇𝑜𝑡𝑎𝑙 − 𝑥) ∙ ∫ 𝑔(𝑣)𝑑𝐹𝑉(𝑣)
𝑣∈𝛺𝑉

  

= (𝑅𝐶𝑇𝑜𝑡𝑎𝑙 − 𝑥) ∙ ∫ 𝑔(𝑣)𝑓𝑉(𝑣)𝑑𝑣
𝑣∈𝛺𝑉

          (4) 

where 𝐹𝑉(∙) and 𝑓𝑉(∙) represent the cumulative distribution 

function and density function of wind speed distribution in the 

wind farm site, respectively, and 𝛺𝑉  denotes the domain of 

power curve. It is often the case that the wind speed follows the 

3-parameter Weibull distribution, based on which density 

function is defined by 

𝑓𝑉(𝑥; 𝜆, 𝛽, 𝜏) =
𝛽

𝜆
(

𝑥 − 𝜏

𝜆
)

𝛽−1

exp [− (
𝑥 − 𝜏

𝜆
)

𝛽

] 

where 𝜆, 𝛽, and 𝜏 represent the scale, shape, and threshold 

parameters, respectively. Then, the conditional expectation in 

Equation (4) becomes  

𝐸(𝑃𝑊|𝑋 = 𝑥) 

     = (𝑅𝐶𝑇𝑜𝑡𝑎𝑙 − 𝑥)  

             × ∫ 𝑔(𝑣)
𝛽

𝜆
(

𝑣−𝜏

𝜆
)

𝛽−1

exp [− (
𝑣−𝜏

𝜆
)

𝛽

] 𝑑𝑣
𝑣∈𝛺𝑉

  

     = (𝑅𝐶𝑇𝑜𝑡𝑎𝑙 − 𝑥) 

             × ∫ ∑ (
𝑅𝐶𝑖

∑ 𝑅𝐶𝑗𝑗
) 𝑔𝑖(𝑣)𝑖

𝛽

𝜆
(

𝑣−𝜏

𝜆
)

𝛽−1

exp [− (
𝑣−𝜏

𝜆
)

𝛽

] 𝑑𝑣
𝑣∈𝛺𝑉

  

It should be noted that, in addition to the rated capacity of 

individual turbines, the probability mass function of turbine 

outage capacity, power curve per unit capacity, and distribution 

function of wind speed need to be obtained to derive the CF and 

power output of the wind farm. 

4. CASE STUDY 
Following the method described above and using Equations 

(1) to (4), the CF and power curve of a wind farm can be 

derived. It may seem mathematically simple, but a great 

amount of operational data is required to assess the outage 

probability, power curve per unit capacity, and wind speed 

distribution in the wind farm site. The application of the 

proposed method described in Sections 2 and 3 is to be 

demonstrated with the case study of Hankyung wind farm in 

Korea, which consists of three 1.5MW turbines and five 

3.0MW turbines. It is noted that four 1.5MW turbines were 

originally installed as pointed out by one of the reviewers and 

it is confirmed from the operation company that one of them 

has remained shut down since 2018 due to a fatal fire accident. 

As mentioned earlier, the expected power output per unit 

capacity and wind speed distribution are crucial for obtaining 

the conditional expectation in Equation (4). The power curve of 

wind turbines manufactured by VESTAS in the Hankyung 

wind farm has been investigated in previous studies of Kim et 

al. (2006) and Kim & Hyun (2010). The cut-in speed and cut-

off speed are 4m/s and 25m/s, respectively, for both 1.5MW 

and 3.0MW turbines. As reported in Bokde et al. (2018), the 

power curves of turbines are usually estimated employing the 

Weibull distribution function. Using the data of the wind speed 

and the corresponding power output reported in Kim et al. 

(2006) and Kim & Hyun (2010), the package ‘WindCurve’ in 

the statistical software R is employed to fit the power curves of 

turbines in the site. The result of fitting the power curves is 

summarized in Table 2, which also presents the measures of 

fitting accuracy of Weibull distribution such as the root mean 

squared error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), and coefficient of 

determination 𝑅2 . By examining the absolute measure of 

goodness-of-fit 𝑅2, it is evident that the data are well-suited to 

fitting Weibull distributions.  

Table 2. Weibull Distribution Fitting for Power Curve of Turbines in 

Hankyung Wind Farm 

Turbine Capacity 1.5MW 3.0MW 

Weibull 

Parameters 

Shape 4.6074 5.1846 

Scale 8.7445 9.4622 

Measures of 

Fitting 

Accuracy 

RMSE 0.0190 0.0166 

MAE 0.0096 0.0088 

MAPE 15.7498 5.2571 

𝑅2 0.9977 0.9981 

The power curve per unit capacity in the wind farm can be 

derived using Equation (3) as follows: 

𝑔(𝑣) = {

0, 𝑣 ≤ 4𝑚 𝑠⁄

𝛼𝑔1(𝑣) + (1 − 𝛼)𝑔2(𝑣), 4𝑚 𝑠⁄ < 𝑣 ≤ 25𝑚 𝑠⁄

0, 𝑣 > 25𝑚 𝑠⁄
  

𝑔1(𝑣) = 1 − exp(− 𝑣 8.7445⁄ )4.6074  

𝑔2(𝑣) = 1 − exp(− 𝑣 9.6422⁄ )5.1846  

where 𝛼 is the weight of rated capacity of 1.5MW turbines 

corresponding to the ratio of total capacity of 1.5MW turbines 

(i.e., 4.5MW = 1.5MW × 3) to wind farm capacity 19.5MW. 

The power curves of 1.5MW and 3.0MW turbines are denoted 

by 𝑔1(𝑣) and 𝑔2(𝑣), respectively, each of which is fitted with 

Weibull distributions with parameters given in Table 2. The 

power curves per unit capacity are compared in Figure 5. 

 

Figure 5. Comparison of Power Curve Per Unit Capacity in 

Hankyung Wind Farm 

The wind speed probability distribution as well as the power 

curve per unit capacity in the wind farm need to be estimated 

to obtain the conditional expectation given in Equation (4). The 

monthly wind speed distribution has often been employed since 

the variations in wind speed greatly differ month by month 

(Ihaddadene et al., 2016; Lee et al., 2018). For the purpose of 

clarity, the summarized statistics, including average, max, min, 

and standard deviation, of the monthly wind speed for the wind 
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turbine #9 are presented in Table 3. The monthly wind speed 

data for individual turbines are available upon request with the 

permission from the wind farm. 

Assuming that the wind speed follows the identical 

distribution within the same month, the sample data from the 

wind farm are fitted with the 3-parameter Weibull distribution, 

which is widely used in the literature (Mohammadi et al. 2016). 

The parameters of Weibull distribution for each month are 

estimated and tested for their significance with Anderson-

Darling statistics (Stephens, 1974), results of which are 

summarized in Table 4. Based on the p-values greater than 0.05 

for every month, it can be concluded that the monthly wind 

speed distributions are well-fitted with the Weibull distribution. 

The corresponding parameters are presented in Table 4. For 

example, the wind speed distribution for January can be written 

as 

𝑓𝑉(𝑥) =
1.832

5.042
(

𝑥−3.867

5.042
)

1.832−1

exp [− (
𝑥−3.867

5.042
)

1.832

] 

Table 3. Summarized Statistics for Monthly Wind Speed Distribution of Wind Turbine #9 (Unit: m/s) 

Year 

 

Month 

2018 2019 2020 

Mean Max Min S.D. Mean Max Min S.D. Mean Max Min S.D. 

Jan 9.86 17.50 4.40 3.54 9.20 16.80  5.00  2.78  9.60 17.90  5.30  2.92  

Feb 9.04 15.50 3.00 3.70 8.94 23.20  2.50  3.32  9.11 19.10  3.00  4.13  

Mar 7.14 18.30 2.00 3.96 8.23 14.70  3.20  3.55  7.29 19.00  4.10  3.81  

Apr 7.27 16.10 2.40 3.80 6.01 13.60  2.90  2.61  6.91 14.60  1.70  2.93  

May 6.80 13.00 2.30 3.33 6.17 13.20  2.60  3.13  6.03 12.50  2.40  2.81  

Jun 4.90 10.80 1.70 2.23 4.72 23.20  2.30  2.94  4.58 12.40  2.10  2.88  

Jul 5.67 12.30 2.20 3.23 5.99 15.60  2.30  3.10  6.43 15.00  2.30  3.47  

Aug 7.21 25.40 3.00 4.33 6.77 14.10  2.70  3.03  7.60 13.20  2.70  3.53  

Sep 6.45 18.00 2.20 3.13 7.29 23.20  2.50  4.57  6.36 23.20  2.50  4.37  

Oct 7.90 15.80 2.40 3.41 7.61 16.00  2.70  2.76  8.02 17.10  2.50  3.83  

Nov 6.15 12.20 2.80 2.71 8.23 23.20  2.60  4.12  7.22 15.40  4.10  3.81  

Dec 9.78 18.00 4.00 3.89 8.97 17.20  3.10  3.61  9.04 19.90  3.30  3.63  

Table 4. Monthly Wind Speed Distribution Fitted with 3-Parameter 

Weibull Distribution 

Month 
Scale 

Parameter 

Shape 

Parameter 

Threshold 

Parameter 
𝒑 −value 

Jan 5.042 1.832 3.867 > 0.5 

Feb 6.566 2.117 1.733 > 0.5 

Mar 5.737 1.756 1.721 0.353 

Apr 5.893 2.023 0.912 > 0.5 

May 3.799 1.361 1.761 0.345 

Jun 3.116 1.412 1.371 0.050 

Jul 3.719 1.341 1.527 > 0.5 

Aug 4.209 1.282 1.936 0.256 

Sep 4.341 1.306 1.759 0.292 

Oct 5.941 2.080 1.467 > 0.5 

Nov 5.101 1.770 2.056 0.076 

Dec 6.071 1.932 2.480 0.400 

By using the power curve per unit capacity with parameters 

in Table 2 and the monthly wind speed distribution with 

parameters in Table 3, the conditional expectation in Equation 

(4) can now be derived. The probability mass function of outage 

capacity 𝑃(𝑋 = 𝑥) needs to be taken into account to obtain the 

expected power output from the wind farm given in Equation 

(2). Assuming, without loss of generality, that the outage 

probability of individual turbines is 0.04 regardless of rated 

capacity for the sake of simplicity, the probability mass 

function can be derived by solving the recursive formula given 

in Equation (1). It should be noted that the outage probability 

of a wind farm can be similarly derived for actual outage 

probabilities of individual turbines, if available, as pointed out 

by reviewers. Summing up the results described above, the 

monthly capacity factor of Hankyung wind farm can be 

estimated and compared with the observed capacity factor over 

the period of 2018-2020, as shown in Figure 6. The annual 

average of the observed capacity factor of Hankyung wind farm 

is 0.2510, whereas the estimated annual average is 0.2321, and 

the difference between the observed and estimated capacity 

factors turns out to be 7.5%. It is asserted that the capacity 

factor can be estimated more accurately by improving the 

estimation accuracy of outage probability of individual 

turbines, power curve per unit capacity of wind farm, and wind 

speed distribution. 

 

Figure 6. Comparison of Estimated and Observed Capacity Factors 

by Month 
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5. CONCLUDING REMARKS 
The capacity factor of wind generation is considered one of 

the most critical measures in assessing the generation 

performance of wind farm. This study is motivated to develop 

a mathematical model for estimating the wind farm capacity 

factor with the consideration of wind speed, power curves, and 

outage probability. The derivation of outage probability with 

different rated capacities of turbines is first outlined by the 

recursive formula. The conditional expectation of output per 

unit capacity given the specified outage capacity in the wind 

farm can be obtained with the wind speed distribution and 

power curves of turbines. The applicability and usefulness of 

the proposed method were demonstrated with the case study of 

Hankyung wind farm in Korea. The power curves of individual 

turbines matched Weibull distributions with different 

parameters and their goodness-of-fits were also investigated 

with such fitness measures as root mean squared error, mean 

absolute error, mean absolute prediction error, and coefficient 

of determination. The wind speed distributions matched 

Weibull distributions month by month. Using the fitted 

functions of power curve and wind speed distribution, the 

monthly capacity factors of wind farm were calculated and 

compared with the observed data. Based on the error margin of 

7.5%, the proposed procedure might well render the capacity 

factor estimation of wind farms. It was implied that the 

proposed method could be effectively employed even when 

there were a multitude of wind turbines with different rated 

capacities and outage probabilities. The estimation accuracy of 

the proposed method can be enhanced with the collection of 

operational data under different circumstances. More research 

efforts need to be directed to develop the analysis method of 

capacity factor estimation involving factors affecting the power 

output such as power curtailment schedule combined with 

energy demand. 
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