Document Type : Research Article


1 Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, P. O. Box: 81310, Skudai, Johor, Malaysia

2 Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P. O. Box: 0182, Gombe, Gombe State, Nigeria.

3 Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, P. O. Box: 43400 Seri Kembangan, Selangor, Malaysia


Oil Palm Frond (OPF) juice has been the focus of Malaysian bioenergy producers through acetone-butanol-ethanol (ABE) fermentation. However, due to the high concentration of phenolic compounds in the hydrolysate, usually gallicacid and ferulic acids, the fermentation medium turns acidic which hinders the growth of most microorganisms. A suitable method of phenolic compound removal with a minimal effect on the sugar stability of OPF juice has been employed using Amberlite XAD-4 resin. During the detoxification process, the effects of temperature and pH on the removal of phenolic compounds and sugar stability were also assessed. The Amberlite XAD-4 resin managed to adsorb about 32% of phenolic compound from the OPF hydrolysate at an optimum temperature of 50 °C and hydrogen ion concentration (pH) of 6. In addition, it maintained as much as 93.7 % of the sugar in the OPF juice. The effect of detoxifying OPF hydrolysate was further tested for biobutanol production in batch culture using strain Clostridium acetobutylicum SR1, L2, and A1. Strain L2 gave the highest improvement in biobutanol and total solvent production by 22.7% and 14.41%, respectively, in medium with detoxified OPF juice. Meanwhile, compared to non-detoxified OPF juice, the acid production of strain L2 significantly decreased by 2.99-fold when using detoxified OPF juice, despite a 1.2-fold increase in sugar consumption. Conclusively, using Amberlite XAD-4 resin to detoxify OPF hydrolysate at pH 6 and 50 °C removed the phenolic compound while increasing the strain L2 capability to improve biobutanol and total solvent production.


Main Subjects

  1. Abe, K., Hori,, & Myoda, T. (2020). Characterization of key aromacompounds in aged garlic extract. Food chemistry, 312, 126081.
  2. Akyıldız, A., Önür, E., Ağçam, E., Kirit, D., & Türkmen, F. U. (2022). Changes in quality parameters of orange juice deacidified by ion exchange resins. Food Chemistry, 375, 131837.
  3. Asri, F., Masngut, N., & Zahari, M. (2019). Biobutanol production from oil palm frond juice in 2 L stirred tank bioreactor with in situ gas stripping recovery. In "IOP Conference Series: Materials Science and Engineering", Vol. 702, pp. 012004. IOP Publishing.
  4. Bottery, M. J., Pitchford, J. W., & Friman, V.-P. (2021). Ecology and evolution of antimicrobial resistance in bacterial communities. The ISME Journal15, 939-948.
  5. Chen, Z., Zeng, J., Zhang, Z.-B., Zhang, Z.-J., Ma, S., Tang, C.-M., & Xu, J.-Q. (2022). Preparation and application of polyethyleneimine-modified corncob magnetic gel for removal of Pb (ii) and Cu (ii) ions from aqueous solution. RSC advances12, 1950-1960.
  6. Din, N. A. S., Lim, S. J., Maskat, M. Y., Mutalib, S. A., & Zaini, N. A. M. (2021). Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. Bioresources and Bioprocessing8, 1-23.
  7. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and bioengineering, 97, 1460-1469.
  8. Fan, L., Wang, G., Holzheid, A., Zoheir, B., & Shi, X. (2021). Sulfur and copper isotopic composition of seafloor massive sulfides and fluid evolution in the 26° S hydrothermal field, Southern Mid-Atlantic Ridge. Marine Geology, 435, 106436.
  9. Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for biofuels, 12, 1-26.
  10. Ghasemi, A., Jamali, M. R., & Es’ haghi, Z. (2021). Ultrasound assisted ferrofluid dispersive liquid phase microextraction coupled with flame atomic absorption spectroscopy for the determination of cobalt in environmental samples. Analytical Letters, 54, 378-393.
  11. Ghorbannezhad, P., & Abbasi, M. (2021). Optimization of Pyrolysis Temperature and Particle Size on the Phenols and Hemicellulose Fast Pyrolysis Products in a Tandem Micro-Pyrolyzer. Journal of Renewable Energy and Environment, 8, 68-74.
  12. Karimi, S., Yaraki, M. T., & Karri, R. R. (2019). A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renewable and Sustainable Energy Reviews, 107, 535-553.
  13. Kee, S. H., Ganeson, K., Rashid, N. F. M., Yatim, A. F. M., Vigneswari, S., Amirul, A.-A. A., Ramakrishna, S., & Bhubalan, K. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321, 124039.
  14. Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R., Al-Huqail, A. A., Siddiqui, M. H., Alosaimi, G., & Ahmad, P. (2019). Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under Cd stress. Biomolecules9, 581.
  15. Khunchit, K., Nitayavardhana, S., Ramaraj, R., Ponnusamy, V. K., & Unpaprom, Y. (2020). Liquid hot water extraction as a chemical-free pretreatment approach for biobutanol production from Cassia fistula pods. Fuel279, 118393.
  16. Kordala, N., Lewandowska, M., & Bednarski, W. (2021). Effect of the method for the elimination of inhibitors present in Miscanthus giganteus hydrolysates on ethanol production effectiveness. Biomass Conversion and Biorefinery, 1-9.
  17. Kourilova, X., Novackova, I., Koller, M., & Obruca, S. (2021). Evaluation of mesophilic Burkholderiasacchari, thermophilic Schlegelellathermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresource Technology, 325, 124704.
  18. Krstonošić, M. A., Hogervorst, J. C., Mikulić, M., & Gojković-Bukarica, L. (2020). Development of HPLC method for determination of phenolic compounds on a core shell column by direct injection of wine samples. Acta Chromatographica, 32, 134-138.
  19. Kumneadklang, S., Sompong, O., & Larpkiattaworn, S. (2019). Characterization of cellulose fiber isolated from oil palm frond biomass. Materials Today: Proceedings17, 1995-2001.
  20. Liu, S., Wang, J., Huang, W., Tan, X., Dong, H., Goodman, B. A., Du, H., Lei, F., & Diao, K. (2019). Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adsorption mechanisms. Chemosphere, 214, 821-829.
  21. Milewska, M., Milewski, A., Wandzik, I., & Stenzel, M. H. (2022). Structurally analogous trehalose and sucrose glycopolymers–comparative characterization and evaluation of their effects on insulin fibrillation. Polymer Chemistry13, 1831-1843.
  22. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31, 426-428.
  23. Miller, T. L., & Wolin, M. (1974). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Applied microbiology27, 985-987.https://doi/pdf/10.1128/am.27.5.985-987.1974
  24. Mohammed, B. B., Yamni, K., Tijani, N., Alrashdi, A. A., Zouihri, H., Dehmani, Y., Chung, I.-M., Kim, S.-H., & Lgaz, H. (2019). Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. Journal of Molecular Liquids, 296, 111997.
  25. Morsi, R., Bilal, M., Iqbal, H. M., & Ashraf, S. S. (2020). Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of the total environment, 714, 136572.
  26. Mosele, J. I., Macià, A., & Motilva, M.-J. (2015). Metabolic and microbial modulation of the large intestine ecosystem by non-absorbed diet phenolic compounds: A review. Molecules, 20, 17429-17468.
  27. Nagasawa, T., Sato, K., & Kasumi, T. (2019). Efficient Continuous Production of Lactulose Syrup by Alkaline Isomerization Using an Organogermanium Compound Continuous Production of Lactulose Syrup Using an Organogermanium Compound. Journal of Applied Glycoscience, 66, 121-129.
  28. Narita, K., Asano, K., Naito, K., Ohashi, H., Sasaki, M., Morimoto, Y., Igarashi, T., & Nakane, A. (2020). Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. Journal of Hospital Infection, 105, 459-467.
  29. Nimbalkar, P. R., Khedkar, M. A., Chavan, P. V., & Bankar, S. B. (2019). Enhanced biobutanol production in folic acid-induced medium by using Clostridium acetobutylicum NRRL B-527. ACS omega, 4, 12978-12982.
  30. Pailliè-Jiménez, M. E., Stincone, P., & Brandelli, A. (2020). Natural pigments of microbial origin. Frontiers in Sustainable Food Systems, 4, 590439.
  31. Pedersen-Bjergaard, S. (2019). Electromembrane extraction—looking into the future. Analytical and bioanalytical chemistry411, 1687-1693.
  32. Phung, Q. T., Maes, N., Jacques, D., Bruneel, E., Van Driessche, I., Ye, G., & De Schutter, G. (2015). Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions. Construction and Building Materials, 82, 376-390.
  33. Raganati, F., Procentese, A., Olivieri, G., Russo, M. E., Salatino, P., & Marzocchella, A. (2020). Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology, 235, 116145.
  34. Robak, K., & Balcerek, M. (2018). Review of second-generation bioethanol production from residual biomass. Food technology and biotechnology56, 174.
  35. Satari, B., Karimi, K., and Kumar, R. (2019). Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable energy & fuels, 3, 11-62.
  36. Shahryari, S., Zahiri, H. S., Haghbeen, K., Adrian, L., & Noghabi, K. A. (2018). High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: bacterial cell viability and membrane impairment in respect to the phenol toxicity. Ecotoxicology and Environmental Safety, 164, 455-466.
  37. Singh, B., Kumar, P., Yadav, A., & Datta, S. (2019). Degradation of fermentation inhibitors from lignocellulosic hydrolysate liquor using immobilized bacterium, Bordetella sp. BTIITR. Chemical Engineering Journal361, 1152-1160.
  38. Waheed, A., Mansha, M., Kazi, I. W., & Ullah, N. (2019). Synthesis of a novel 3, 5-diacrylamidobenzoic acid based hyper-cross-linked resin for the efficient adsorption of Congo Red and Rhodamine B. Journal of hazardous materials369, 528-538.
  39. Way, M. L., Jones, J. E., Nichols, D. S., Dambergs, R. G., & Swarts, N. D. (2020). A comparison of laboratory analysis methods for total phenolic content of cider. Beverages, 6, 55.
  40. Wei, W., Li, J., Han, X., Yao, Y., Zhao, W., Han, R., Li, S., Zhang, Y., & Zheng, C. (2021). Insights into the adsorption mechanism of tannic acid by a green synthesized nano-hydroxyapatite and its effect on aqueous Cu (II) removal. Science of The Total Environment, 778, 146189.
  41. Wikandari, R., Sanjaya, A. P., Millati, R., Karimi, K., & Taherzadeh, M. J. (2019). Fermentation inhibitors in ethanol and biogas processes and strategies to counteract their effects. In "Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels", pp. 461-499. Elsevier.