Document Type : Research Article


1 BERS Pubic School, Margupur, P. O. Box: 221701, Chilkhar, Ballia (UP), India

2 Department of Mechanical Engineering, Manav Rachna University, P. O. Box: 121004, Faridabad, Haryana, India

3 Legato Health Technologies, P. O. Box: 560045, Bengaluru, Karnataka, India


This study considers N-photovoltaic thermal-thermo electric cooler (PVT-TEC) air collectors connected in series for thermal and electrical performance. An improved Hottel-Whiller-Bliss (HWB) equation and mass flow rate factor were derived for the nth PVT-TEC air collectors. The derivation is based on energy balance equation for each component of N-photovoltaic thermal-thermo electric cooler (PVT-TEC) air collectors connected in series. Further, thermal energy and electrical energy from PV module and TEC were analyzed based on a given design and climatic parameters along with the overall exergy of the proposed system on the hourly and daily bases. Numerical computations were conducted using MATLAB under Indian climatic conditions. The proposed thermal model is valid for all climatic and weather conditions. Based on the numerical computations carried out, the following conclusions were made:

The electrical power of PV module decreased with increase in the number of the n^th PVT-TEC air collectors as the electrical power of TEC increased.
The overall instantaneous exergy efficiency decreased with increase in the number of the n^th PVT-TEC air collectors.
Packing factor of TEC was found to be a very sensitive parameter for optimizing the number of PVT-TEC air collectors to ensure maximum overall exergy, and it was found to be β_tec=0.5. for N=7


Main Subjects

  1. N. Tiwari, A. Tiwari, and Shayam, Handbook of solar energy. Springer, 2016.
  2. N. Tiwari and Dubey S., “Fundamentals of Photovoltaic Modules and Their Applications,” R. Soc. Chem. (RSC), 2010.
  3. Dinçer and M. A. Rosen, “About the Authors,” in Exergy (Second Edition), Second Edi., I. Dincer and M. A. Rosen, Eds. Elsevier, 2013, p. xvii. doi:
  4. Dincer, “The role of exergy in energy policy making,” Energy Policy, vol. 30, no. 2, pp. 137–149, Jan. 2002, doi: 10.1016/S0301-4215(01)00079-9.
  5. Hoseinzadeh, R. Yargholi, H. Kariman, and P. S. Heyns, “Exergoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy,” Environ. Prog. Sustain. Energy, vol. 39, no. 5, 2020, doi: 10.1002/ep.13405.
  6. Kariman, S. Hoseinzadeh, S. Heyns, and A. Sohani, “Modeling and exergy analysis of domestic med desalination with brine tank,” Desalin. Water Treat., vol. 197, pp. 1–13, 2020, doi: 10.5004/dwt.2020.26105.
  7. Kariman, S. Hoseinzadeh, and P. S. Heyns, “Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation,” Case Stud. Therm. Eng., vol. 16, p. 100548, Dec. 2019, doi: 10.1016/J.CSITE.2019.100548.
  8. Hoseinzadeh and P. S. Heyns, “Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant,” J. Energy Resour. Technol., vol. 143, no. 8, p. 082106 (9 pages), doi:
  9. Hoseinzadeh, M. H. Ghasemi, and S. Heyns, “Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems,” Renew. Energy, vol. 160, pp. 323–332, 2020, doi:
  10. Jafari, A. Sohani, S. Hoseinzadeh, and F. Pourfayaz, “The 3E Optimal Location Assessment of Flat‐Plate Solar Collectors for Domestic Applications in Iran,” Energies, vol. 15, no. 10, pp. 1–17, 2022, doi: 10.3390/en15103589.
  11. A. Duffie and Beckman W. A., Solar Engineering of Thermal Processes. John Wiley & Sons, Inc., 2013. doi: 10.1002/9781118671603.
  12. Sarwar, M. R. Khan, M. Rehan, M. Asim, and A. H. Kazim, “Performance analysis of a flat plate collector to achieve a fixed outlet temperature under semi-arid climatic conditions,” Sol. Energy, vol. 207, no. April, pp. 503–516, 2020, doi: 10.1016/j.solener.2020.06.088.
  13. Badiei, M. Eslami, and K. Jafarpur, “Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling,” Energy, vol. 192, 2020, doi: 10.1016/
  14. Arslan, M. Aktaş, and Ö. F. Can, “Experimental and numerical investigation of a novel photovoltaic thermal (PV/T) collector with the energy and exergy analysis,” J. Clean. Prod., vol. 276, p. 123255, 2020, doi:
  15. Ben cheikh el hocine, K. Touafek, F. Kerrour, H. Haloui, and A. Khelifa, “Model Validation of an Empirical Photovoltaic Thermal (PV/T) Collector,” Energy Procedia, vol. 74, pp. 1090–1099, 2015, doi:
  16. A. Zondag, D. W. de Vries, W. G. J. van Helden, R. J. C. van Zolingen, and A. A. van Steenhoven, “The yield of different combined PV-thermal collector designs,” Sol. Energy, vol. 74, no. 3, pp. 253–269, 2003, doi:
  17. T. Chow, “A review on photovoltaic / thermal hybrid solar technology,” Appl. Energy, vol. 87, no. 2, pp. 365–379, 2010, doi: 10.1016/j.apenergy.2009.06.037.
  18. Dupeyrat, C. Ménézo, and S. Fortuin, “Study of the thermal and electrical performances of PVT solar hot water system,” Energy Build., vol. 68, pp. 751–755, 2014, doi:
  19. T. Kostić, T. M. Pavlović, and Z. T. Pavlović, “Optimal design of orientation of PV/T collector with reflectors,” Appl. Energy, vol. 87, no. 10, pp. 3023–3029, 2010, doi: 10.1016/j.apenergy.2010.02.015.
  20. N. Tiwari, M. Meraj, and M. E. Khan, “Exergy analysis of N-photovoltaic thermal-compound parabolic concentrator (N-PVT-CPC) collector for constant collection temperature for vapor absorption refrigeration (VAR) system.,” Sol. Energy, vol. 173, pp. 1032–1042, 2018, doi: 10.1016/j.solener.2018.08.031.
  21. Proell, P. Osgyan, H. Karrer, and C. J. Brabec, “Experimental efficiency of a low concentrating CPC PVT flat plate collector,” Sol. Energy, vol. 147, pp. 463–469, 2017, doi: 10.1016/j.solener.2017.03.055.
  22. Cabral, J. Gomes, and B. Karlsson, “Performance evaluation of non-uniform illumination on a transverse bifacial PVT receiver in combination with a CPC geometry,” Sol. Energy, vol. 194, pp. 696–708, doi: 10.1016/j.solener.2019.10.069.
  23. Atheaya, A. Tiwari, and G. N. Tiwari, “Exergy analysis of photovoltaic thermal (PVT) compound parabolic concentrator (CPC) for constant collection temperature mode,” Sol. Energy, vol. 135, pp. 222–231, 2016, doi: 10.1016/j.solener.2016.05.055.
  24. Dimri, A. Tiwari, and G. N. Tiwari, “Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency,” Sol. Energy, vol. 166, no. November 2017, pp. 159–170, 2018, doi: 10.1016/j.solener.2018.03.030.
  25. Huen and W. A. Daoud, “Advances in hybrid solar photovoltaic and thermoelectric generators,” Renew. Sustain. Energy Rev., vol. 72, no. October, pp. 1295–1302, 2017, doi: 10.1016/j.rser.2016.10.042.
  26. S. Ong, M. S. Naghavi, and C. Lim, “Thermal and electrical performance of a hybrid design of a solar-thermoelectric system,” Energy Convers. Manag., vol. 133, pp. 31–40, 2017, doi: 10.1016/j.enconman.2016.11.052.
  27. Y. Sudharshan, V. P. Kumar, and H. C. Barshilia, “Performance evaluation of a thermally concentrated solar thermo-electric generator without optical concentration,” Sol. Energy Mater. Sol. Cells, vol. 157, pp. 93–100, 2016, doi: 10.1016/j.solmat.2016.05.033.
  28. Yin, Q. Li, and Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Convers. Manag., vol. 143, pp. 188–202, 2017, doi: 10.1016/j.enconman.2017.04.004.
  29. Zhang, Y. Xuan, and L. Yang, “Performance estimation of photovoltaic-thermoelectric hybrid systems,” Energy, vol. 78, pp. 895–903, 2014, doi: 10.1016/
  30. Zhu, Y. Deng, Y. Wang, S. Shen, and R. Gulfam, “High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management,” Energy, vol. 100, pp. 91–101, 2016, doi: 10.1016/
  31. Li, D. Zhong, T. Ma, A. Kazemian, and W. Gu, “Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis,” Energy Convers. Manag., vol. 206, no. November 2019, p. 112479, 2020, doi: 10.1016/j.enconman.2020.112479.
  32. Ma, M. Li, and A. Kazemian, “Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously,” Appl. Energy, vol. 261, no. October 2019, p. 114380, 2020, doi: 10.1016/j.apenergy.2019.114380.
  33. Shyam, G. N. Tiwari, O. Fischer, R. K. Mishra, and I. M. Al-Helal, “Performance evaluation of N -photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: An experimental study,” Energy, vol. 134, pp. 302–313, 2016.
  34. Dubey and G. N. Tiwari, “Thermal modeling of a combined system of photovoltaic thermal ( PV / T ) solar water heater,” Sol. Energy, vol. 82, pp. 602–612, 2008, doi: 10.1016/j.solener.2008.02.005.
  35. Z. Sharaf and M. F. Orhan, “Comparative thermodynamic analysis of densely-packed concentrated photovoltaic thermal (CPVT) solar collectors in thermally in-series and in-parallel receiver configurations,” Renew. Energy, vol. 126, pp. 296–321, 2018, doi: 10.1016/j.renene.2018.03.026.
  36. Vega and C. Cuevas, “Parallel vs series configurations in combined solar and heat pump systems: A control system analysis,” Appl. Therm. Eng., vol. 166, p. 114650, 2020, doi: 10.1016/j.applthermaleng.2019.114650.
  37. Kotb, M. B. Elsheniti, and O. A. Elsamni, “Optimum number and arrangement of evacuated-tube solar collectors under various operating conditions,” Energy Convers. Manag., vol. 199, p. 112032, 2019, doi:
  38. L. Evans, “Simplified method for predicting photovoltaic array output,” Sol. Energy, vol. 27, no. 6, pp. 555–560, 1981.
  39. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy, vol. 83, no. 5, pp. 614–624, 2009, doi: 10.1016/j.solener.2008.10.008.
  40. Ouyang and D. Li, “Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances,” Sci. Rep., vol. 6, no. April, pp. 1–12, 2016, doi: 10.1038/srep24123.
  41. Bejan, “General criterion for rating heat-exchanger performance,” Int. J. Heat Mass Transf., vol. 21, no. 5, pp. 655–658, 1978, doi: 10.1016/0017-9310(78)90064-9.
  42. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach. McGraw- Hill Education, New York., 2015.