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A B S T R A C T  

 

The sun serves as the primary energy source, providing our planet with the essential energy for sustaining life. 

To efficiently harness this energy, photovoltaic cells, commonly known as PV cells, are employed. These cells 

convert the solar energy they receive into electrical energy. The operational point of the solar cell, delivering 

maximum output power, is referred to as the maximum power point (MPP). However, as light availability and 

temperature fluctuate throughout the day, the MPP also varies accordingly. To maintain constant operation at 

the MPP, Maximum Power Point Tracking (MPPT) algorithms are employed to trace the MPP during module 

operation. These algorithms can be categorized into four groups: classical, intelligent, optimization, and hybrid, 

based on the tracking algorithm utilized. Each MPPT algorithm, existing in these categories, comes with its own 

set of advantages and limitations. This paper extensively reviews fifteen algorithms categorized under different 

groups. The review concludes with a comparative analysis of these algorithms, considering various parameters 

such as cost, complexity, tracking accuracy, and sensed parameters in a succinct manner. The paper focuses on 

elucidating the necessity of MPPT algorithms, their classification as per existing literature, and a comparative 

assessment of the studied MPPT algorithms. This comprehensive review aims to address advancements in this 

field, paving the way for further research. 

https://doi.org/10.30501/jree.2024.407775.1650

1. INTRODUCTION1 

With the current scenario of a rapid increase in population, 

the demand for energy is rising day by day. Conventional 

sources of energy, such as coal, natural gas, and petroleum, are 

age-old and limited. It takes millions of years for these sources 

to form, and they are inevitably depleting (Nnadi, 2012 ; Uddin 

et al., 2023). Renewable energy emerges as a potential solution 

to this crisis. Energy generated from natural resources, 

including sunlight, wind, and water, is termed renewable 

energy. Wind energy, solar energy, and geothermal energy are 

examples of renewable sources considered inexhaustible. Solar 

power, in particular, stands out as a significant and vital source 

of energy. Given India's proximity to the equator, it enjoys a 

favorable geographical location for solar energy utilization 

(Catherine, 2013; Sumathi et al., 2015). To harness solar 

energy, photovoltaic (PV) cells come into play. These electrical 

devices convert solar energy into electrical energy. When light 

strikes the n-p junction, it creates an electric field, facilitating 

the flow of electrons. PV cells are connected in series to yield 

high-voltage output, and this arrangement is then connected in 

parallel to increase current output, forming a PV array. A 

typical PV cell is often represented by a current source with a 

diode connected in parallel. The resistance offered by the p-n 
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junction to the electron flow is denoted by series resistance, 

while parallel resistance accounts for leakage current. Figure 1 

illustrates a model of a photovoltaic cell composed of a single 

diode (Sumathi et al., 2015). The mathematical model of a PV 

cell is expressed by Equation (1): 

I = Iph − ID (e
qV

nKT − 1)  (1) 

 

Figure 1. Single diode model for PV cell. 

A standard solar panel can convert approximately 30% of 

incident solar energy into electrical energy (Xu et al. ,2021). 

The concept of Maximum Power Point Tracking (MPPT) is 

employed to improve solar panel efficiency. The maximum 

power supplied by PV is influenced by load parameters, 

irradiance, and ambient temperature. The properties of a PV 

array are non-linear, as illustrated in Figure 2, and these 

characteristics vary based on temperature and irradiance (Gupta 

et.al., 2017). The simulated array has a peak capacity of 10 kW 

and is designed with an open-circuit voltage of 350 V and a 

short-circuit current of 315 A. 
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Figure 2. Characteristics of PV array for (a) I-V characteristics at different temperature levels; (b) I-V characteristics at different irradiation 

levels; (c) P-V characteristics at different temperature levels; and (d) P-V characteristics at different irradiation levels. 

 
Figure 3. Statistics of MPPT publication in past three decades. 

 

The MPPT algorithms play a crucial role in tracking the 

MPP and ensuring that the array consistently delivers 

maximum output. At the MPP, the load impedance closely 

aligns with the source impedance, allowing the system to 

extract the maximum power from the source. To achieve this 

optimal condition, MPPT is employed to adjust the load 

impedance presented to the array to match that of the source 

impedance. The MPPT automatically monitors the fluctuating 

load conditions of the PV array. Various algorithms for tracking 

the MPPT are documented in the literature (Tajjour & Chandel, 

2023; Kumar et.al., 2023; Kundu et al., 2016; Sera et al., 2006; 

Shinde et al., 2016; Esram et al., 2007; Belkaid et al., 2017). 

Figure 3 illustrates the number of papers published on MPPT 

in the past decades. 

This article elucidates the fundamental principles governing 

the optimal functioning of photovoltaics to achieve maximum 

power extraction. Additionally, it provides insights into the 

operation of Maximum Power Point Tracking (MPPT) 

algorithms in a general context. The significance and necessity 

of MPPT are explored, considering the growing importance of 

renewables in clean power generation. Given the widespread 

availability of solar power, the paper concentrates on 

elucidating advancements in algorithms for power point 

tracking in Photovoltaics (PVs), along with their associated 

advantages and drawbacks. 

Section 1 of this article offers a concise introduction to PV 

characteristics and the imperative need for MPPT methods. In 

Section 2, the various methods are categorized and explained 
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based on the field's advancements, namely classical (Loukriz et 

al., 2016; Ahmad et al., 2010;  Sher et al., 2015; Casadei et al., 

2006) intelligent  (Cheng et al., 2021; Kottas et al., 2006; . 

Elobaid et. al., 2012) optimization (Miyatake et al., 2007; 

Mohanty et al., 2015; Jiang et al., 2013;   Kumar et al., 2017), 

and hybrid (Sundareswaran et al., 2015) accompanied by their 

respective flowcharts. Section 3 summarizes the comparison of 

all methods discussed in the article, utilizing tabular and 

graphical representations. This allows readers to obtain a 

compact and precise understanding of these algorithms, 

facilitating the selection of the most appropriate one for their 

project and area of interest. Finally, Section 4 concludes the 

presented work, providing a comprehensive overview of the 

discussed topics and findings. 

 

2. MAXIMUM POWER POINT TRACKING ALGORITHMS 

The MPPT algorithms track the MPP and ensure that 

the array always provides maximum output. 

There are different sorts of MPPT algorithms, which are 

classified below and also shown in Figure4: 

• Classical MPPT; 

• Intelligent MPPT; 

• Optimization Based MPPT; 

• Hybrid MPPT. 

 

Figure 4. Classification of various MPPT algorithms in fishbone 

Structure. 

The reduced complexity of traditional Maximum Power 

Point Tracking (MPPT) algorithms makes them simpler to 

implement. Classical MPPTs considered in the paper include 

Perturb and Observe (Loukriz et al., 2016) Fractional Open 

Circuit Voltage (Ahmad, 2010) Fractional Short Circuit 

Current and Ripple Correlation Control  (Sher et al., 2015). The 

intelligent MPPT algorithms discussed in this paper are Fuzzy 

Logic Control (Kottas et al., 2006) and Artificial Neural 

Networks (Elobaid et al., 2012). These algorithms are designed 

for use in dynamic environmental conditions with high 

accuracy. The optimization MPPT utilizes evolutionary 

algorithms inspired by the search behavior of animals seeking 

food. Additionally, these algorithms can be easily executed 

with the assistance of a low-cost microcontroller. Optimization 

algorithms featured in the paper comprise Particle Swarm 

Optimization (Miyatake et al., 2007) Grey Wolf Optimization 

(Mohanty et al., 2015) Ant Colony Optimization (Jiang et.al., 

2013) and Artificial Bee Colony ( Kumar et al., 2017). 

Hybrid MPPT algorithms combine classical MPPT algorithms 

with intelligent or optimization MPPT algorithms. At times, a 

combination of intelligent and optimization MPPTs is 

employed to create a hybrid MPPT. In hybrid MPPTs, the 

Maximum Power Point (MPP) estimation is initially 

determined using classical methods, and then the estimated 

point is fine-tuned using advanced algorithms to achieve the 

actual MPP. The hybrid algorithms detailed in the paper are 

Hybrid FSCC-P&O MPPT, Hybrid FLC-P&O MPPT, Hybrid 

PSO-P&O MPPT, and Hybrid FLC-PSO MPPT algorithms ( 

Kumar et al., 2017). These algorithms are explained in the 

following. 

2.1 Classical MPPT 

2.1.1. Perturb and Observe method (P&O) 

The P&O algorithm operates based on the hill-climbing 

principle. The algorithm flowchart is depicted in Figure 5. To 

identify the maximum power point, the operating voltage of the 

PV panel is continuously perturbed, and the change in power is 

compared to previous data. Consequently, the operating point 

on the P-V curve is adjusted (Pandey and Srivastava, 2019). 

The P&O algorithm finds extensive applications due to its ease 

of implementation. However, a notable drawback of this 

method is that, due to the fixed step size, once it approaches the 

Maximum Power Point (MPP), the system's operating point 

oscillates around the MPP (Blange et al., 2015). While this 

approach ensures convergence to the MPP, its performance is 

slow and susceptible to rapid changes in environmental 

conditions (Podder et al., 2019; Bollipo et al., 2021; Fapi et al., 

2019). 

 

2.1.2. Incremental Conductance method (INC) 

The INC approach is grounded in the observation that at 

Maximum Power Point (MPP), the gradient of the power-

voltage curve is zero. The slope to the left of the curve is 

positive, while to the right, it is negative (Sera et al., 2013). 

Figure 6 illustrates the algorithm flowchart of the INC method. 

The slope of the PV curve is expressed as follows: 

𝑑𝑃

𝑑𝑉
=

𝑑(𝑉.𝐼)

𝑑𝑉
= 𝐼 + 𝑉

𝑑𝐼

𝑑𝑉
= 𝐼 + 𝑉

∆𝐼

∆𝑉
                            (2) 

After determining ∆V, ∆I and by using V, I and the above 

equation, instantaneous conductance (I/V) and incremental 

conductance (
∆𝐼

∆𝑉
) are compared to determine which side of the 

PV curve point of operation is to be moved to obtain the MPP 

(Huynh and Dunnigan, 2016). This approach, like P&O, 

employs step size to shift the operating point and identify the 

MPP, and it oscillates around the MPP. This can be enhanced 

by using variable- step size, which changes as the slope varies, 

but it makes the algorithm complex and time-consuming. 

 

 

Figure 5. Algorithm for Perturb and Observe method. 
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Figure 6. Algorithm for Incremental Conductance method. 

 

2.1.3. Fractional Open Circuit Voltage (FOCV) 

This is an approximation and does not provide the real MPP. 

Figure7 depicts the FOCV method’s algorithm flowchart. The 

algorithm is based on the fact that the open-circuit voltage (VOC) 

and the maximum power point voltage (VMPP) are proportional 

to each other and the relationship is given by(Baimel et al., 

2019).  

VMPP ≈ KOC ∗ VOC                                                             (3) 

Here, KOC is the voltage proportionality constant, which 

ranges from 0.71 to 0.78. The drawback of this algorithm is that 

VOC must be measured every now and then. To do so, the load 

is disconnected from the PV, which results in power loss. 

 

2.1.4. Fractional Short Circuit Current (FSCC) 

This method is identical to FOCV in the sense that it uses 

current parameters instead of voltage. Figure 8 depicts the 

FSCC method’s algorithm flowchart. The algorithm functions 

based on the fact that the short-circuit current (ISC) and the 

maximum power point current (IMPP) are proportional to each 

other and the relationship is given by 
 

IMPP ≈ KSC ∗ VSC                                              (4) 

where KSC is the current proportionality constant, which 

ranges from 0.64 to 0.85 (Sher et al.,2015). Here, the current 

ISC changes as the environmental conditions vary, and so the ISC 

must be measured at periodic intervals, which requires 

disconnecting the load from the PV panel  (Sher et al., 2015;  

Masoum et al., 2002). 

 

2.1.5. Ripple Correlation Control (RCC) 

A PV module is ultimately going to be connected to the 

power electronic converter, and with the introduction of the 

power converter, a ripple is introduced in both the PV current 

and voltage. This ripple is then reflected in the power output of 

the converter. The algorithm utilizes this ripple to track the 

MPP. Since the ripple is naturally present due to switching in 

converters, there is no need for artificial perturbation (Spiazzi, 

2009). Figure 9 illustrates the algorithm flowchart of the RCC 

method. RCC correlates dp/dt with dv/dt or di/dt, and using the 

equations below, it checks whether the voltage or current of PV 

is greater or less than that of the MPP. RCC eventually aims to 

minimize this ripple to zero and adapt the operating voltage and 

current of the panel to that of the MPP, ensuring that the 

predicted gradient of the curve is zero (Boonmee and 

Kumsuwan, 2013; Srinivas & Sreeraj 2016; Moo and Wu 2014;   

Brunton et al., 2010). 

When the operational point on the power curve is to the left 

of MPP, we have: 

𝑑𝑉

𝑑𝑡
> 0 or   

𝑑𝐼

𝑑𝑡
> 0 and 

𝑑𝑃

𝑑𝑡
> 0 (5) 

    

When the operational point on the power curve is to the 

right of MPP, we have: 

𝑑𝑉

𝑑𝑡
> 0 or   

𝑑𝐼

𝑑𝑡
> 0 and 

𝑑𝑃

𝑑𝑡
< 0 (6) 

    

 

 

 
 

Figure 7. Algorithm for Fractional Open Circuit Voltage 

 

 

Figure 8. Algorithm for Fractional Short-Circuit Current. 
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Figure 9. Algorithm for Ripple Correlation Control method. 

 

 

Figure 10. Algorithm for Fuzzy Logic Control method. 

 

2.2. Intelligent MPPT 

2.2.1. Fuzzy Logic Control (FLC) 

In the FLC algorithm, fuzzy logic theory is employed to 

determine the MPP. This approach eliminates the need for a 

detailed mathematical model of the system. Fuzzy logic 

operates not on absolute values of true and false (i.e., 0 and 1) 

but is grounded in degrees of truth and falsity. Figure 10 

illustrates the algorithm flowchart of the FLC method. 

Fuzzification, fuzzy rule-based table inference, and 

defuzzification constitute the three essential processes in Fuzzy 

Logic control (Priyadarshi et al., 2020). During fuzzification, 

each variable used in control rules is expressed in terms of 

fuzzy set notation, transforming them into linguistic-based 

variables. For instance, two numerical variables, error and 

change in error, can be inputted and subsequently translated 

into linguistic-based variables using membership functions. In 

the subsequent step, the fuzzy-rule-based table is employed to 

map potential outputs corresponding to the inputs forming the 

fuzzy set. In the defuzzification process, the fuzzy inference 

result is converted into crisp values. A decision-making 

algorithm is then utilized to select the optimal crisp value from 

the potential solutions within the fuzzy set (Li et al., 2019). This 

method enables swift tracking of MPP and is adaptable to 

diverse environmental conditions. However, it is important to 

note that the controller requires periodic tuning to account for 

varying atmospheric conditions (Datta and  Senjy, 2013). 

 

2.2.2. Artificial Neural Networks (ANN) 

The computation of Maximum Power Point (MPP) based 

on Artificial Neural Networks (ANN) is also an intelligent 

algorithm. Similar to Fuzzy Logic Control (FLC), ANN does 

not require detailed information about the Photovoltaic (PV) 

system in operation. The ANN is established on the workings 

of neural networks in the human brain. It comprises three 

layers: the output layer, the hidden layer, and the input layer, 

all made up of interlinked nodes (kumar et al., 2020). The 

weight between ith and the jth node is defined as Wij. The values 

of the weights between nodes are determined by simulation and 

training (Kumar et al., 2022; Dogra et al., 2022). This approach 

is suitable for complex problem-solving where results need to 

be computed based on the mapping of input and output ( 

Balzani and Reatti, 2005). Figure 11 depicts the ANN method’s 

algorithm flowchart. The input to the ANN could be panel 

voltage, current, ISC, VOC, irradiance, temperature, or a 

combination of these. The output is the signal that optimizes the 

panel to operate at VMPP. The ANN learns to associate inputs 

with required outputs and assigns values to weights to better 

compute the output for variable inputs. The process of training 

the algorithm of the hidden layer is the reason for the speed and 

efficiency of this algorithm. ANN-based tracking is widely 

applied to various conditions, including variables like PV 

module, configuration, and partial shading conditions. If the 

configurations are altered, then retraining of the artificial neural 

network needs to be done for the new configuration before use. 

This method provides fast-tracking of MPP and has a higher 

rate of convergence. The only limitation is the training required 

by the ANN before connecting it to the system (Ramana and 

Jena, 2015; Giraud and Salameh, 1999; Karami et al., 2017). 

 
 

Figure 11. Algorithm for Artificial Neural Networks method. 

 

2.3. Optimization-Based MPPT 

2.3.1. Particle Swarm Optimization (PSO) 

The initial suggestion for this method originated from 

Eberhart and Kennedy in 1995. Figure 12 illustrates the 

algorithm flowchart of the PSO method. The PSO algorithm 

draws inspiration from the social behavior of animals, 

specifically swarms (Ghita and Ahmed, 2018). The 

fundamental concept behind this approach is to establish 

connections between evolutionary principles and artificial life, 

linking the life patterns of animals to artificial theories. 



N. Gupta et al. / JREE:  Vol. 11, No. 2, (Spring 2024)   18-29 
 

23 

Swarms, akin to insects, move collectively in large numbers to 

seek food and adapt their patterns based on experiential 

learning. The PSO algorithm boasts merits such as simple 

realization and fast convergence. It is particularly effective for 

locating maxima and minima in a function defined within a 

multi-dimensional vector space. However, a notable drawback 

of PSO is its susceptibility to falling into local optima, 

especially in higher-dimensional spaces (Fahad, 2018). 

Additionally, it exhibits a lower rate of convergence during the 

iterative process. 

2.3.2. Grey Wolf Optimization (GWO) 

The GWO algorithm is grounded in the hunting patterns of 

grey wolves, making it a widely utilized swarm intelligence 

approach. Figure 13 illustrates the algorithm flowchart of the 

GWO method. GWO draws inspiration from the social 

structure of grey wolf families, which typically consist of 5–12 

members that collaborate in both living and hunting. Key 

advantages of GWO include its rapid seeking speed, ease of 

implementation, and high search precision (Mosavi and 

Gharahopog, 2020). In a wolf pack, there are male and female 

leaders known as alphas, responsible for decisions such as 

choosing hunting locations, determining sleeping places, and 

setting wake-up times. The entire pack signals their 

acknowledgment of the alpha by holding their tails down. The 

alpha wolf takes charge of all decisions, and beta wolves are 

expected to show respect to the alpha. Omega, the wolf with the 

lowest rank, communicates information to the other prevailing 

wolves. The remaining grey wolves are categorized as delta and 

prevail in the omega group ( Mirjalili & Mirjalili, 2014). 

However, GWO does have its drawbacks, including a slow 

coverage rate and low solving accuracy (Mohanty et al., 2016). 

 

 
 

Figure 12. Algorithm for Particle Swarm Optimization method. 

 

 

 

 

 

 

Figure 13. Algorithm for Grey Wolf Optimization method. 

 

 

Figure 14. Algorithm for Ant Colony Optimization method. 

 

 

Figure 15. Algorithm for Artificial Bee Colony method. 
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2.3.3. Ant Colony Optimization (ACO) 

The foundation of the ACO algorithm lies in the hunting 

and gathering (foraging) behavior exhibited by ant colonies. 

Marco Dorigo initially proposed this concept in 1990. Ants, 

being biomass insects, exhibit a preference for communal 

living in large colonies rather than leading solitary lives. A key 

advantage of the ACO algorithm is its enhancement of 

efficiency in high-speed data transmission (Krishnan et al., 

2020). Ants employ sounds and pheromones as communication 

tools to convey vital information. Pheromones, chemical 

compounds secreted by ants, serve as directional cues for other 

ants to follow. Consequently, the primary focus of ACO is to 

investigate how ants efficiently transport food back to their 

colonies by choosing the shortest routes possible. 

Figure 14 illustrates the algorithm flowchart of the ACO 

method. In the quest for food, multiple routes exist from the 

colony to the food source. Upon locating food sources, ants 

transport portions of the food back to the colonies while 

depositing essential pheromones along the return path. Ants 

select specific paths based on the pheromone trails left by 

fellow worker ants. In essence, when a worker ant discovers a 

shorter path to a specific food source within the colony, other 

ants subsequently follow it, guided by the pheromone trail. 

Simulated ants traverse a graph, mimicking the behavior of real 

ants to determine the optimal solution on the graph (Dorigo et 

al., 1996; Adly and Besheer, 2012). The primary drawback is 

the time-consuming nature of laying pheromones on trails used 

for ant communication, making it susceptible to falling into the 

trap of local optima. 

2.3.4. Artificial Bee Colony (ABC) 

Swarm intelligence stands as one of the rapidly expanding 

research fields, drawing inspiration from the collaborative 

behaviors observed in social animals such as bees and birds. 

These creatures harness collective intelligence for activities 

like searching for food. In Figure 15, the algorithm flowchart 

for the ABC method is illustrated. The ABC algorithm 

specifically mimics the foraging behavior of bees in the 

collection of nectar and subsequent processing. Bees employ a 

dance language as a means of communication to convey crucial 

information about food quality to the entire group. Artificial 

bees are categorized into three types: employed, onlooker, and 

scout bees. Each employed bee is assigned to a specific food 

source. These bees travel to their respective food cradles, assess 

the quality of the food, and then communicate their findings 

through dance within the hive (Sharma and Agarwal, 2013). 

Onlooker bees observe the dances of employed bees and select 

one based on the dance to explore the neighborhood and 

evaluate the quantity of nectar. The superior food source is then 

recorded, and any new food sources discovered by scout bees 

replace the abandoned ones. Employed bees without a food 

source transition into the role of scout bees, actively searching 

until they locate a new food source (Li et al., 2019). 

2.4. Hybrid MPPT 

Hybrid MPPT algorithms comprise a blend of two or more 

MPPT algorithms. The primary objective of a hybrid algorithm 

is to address a drawback of one algorithm by concurrently 

utilizing another algorithm. Hybrid MPPT algorithms aim to 

alleviate the computational load on hardware and enhance the 

speed of achieving Maximum Power Point (MPP), all while 

maintaining a high level of accuracy (Sundareswaran et al., 

2014). The efficient tracking of the Global Maximum Power 

Point (GMPP) among various Local Maximum Power Points 

(LMPP) is not effectively managed by optimized or intelligent 

MPPT algorithms individually. Therefore, to leverage the 

strengths of both algorithm types, intelligent and optimization 

algorithms are employed in parallel for precise GMPP tracking. 

Hybrid MPPT algorithms encompass the hybridization of 

classical control algorithms (such as FSCC with P&O), the 

fusion of classical control algorithms with intelligent 

algorithms (FLC with P&O), the integration of classical control 

algorithms with optimization algorithms (PSO and P&O), and 

the combination of intelligent and optimization algorithms 

(FLC and PSO). 

2.4.1. Hybrid FSCC-P&O MPPT 

 this approach, the P&O algorithm is hybridized with the 

FSCC algorithm. The FSCC algorithm demonstrates quick 

convergence speed but lacks accuracy, a deficiency addressed 

by the P&O algorithm (Batarseh and Zater, 2018; Mohapatra et 

al., 2017). Therefore, combining these two approaches results 

in immediate and accurate tracking of the MPP. The hybrid 

algorithm is initiated with the FSCC process, bringing it closer 

to the MPP through the offline process. Subsequently, the 

system progresses to the next step, i.e., P&O. The P&O 

approach gains an advantage by being able to choose small step 

sizes, as the algorithm is already operating near the MPP. This 

leads to fewer power oscillations and, consequently, improved 

efficiency and accuracy. Figure 16 illustrates the flowchart of 

the Hybrid FSCC-P&O method. 

2.4.2. Hybrid FLC-P&O MPPT 

In this method, the P&O algorithm is hybridized with a 

widely used artificial intelligence algorithm, the FLC 

algorithm. FLC improves the operating point position to the 

ideal one, thereby maximizing performance. However, FLC 

lacks one dimension: the inputs are selected by the users, 

making the actual performance of the algorithm user-

dependent. Users create and select the membership functions 

and the rule base for the algorithm to work. The P&O algorithm 

suffers from issues such as oscillations and a lengthy settling 

time. The hybrid algorithm can overcome the shortcomings of 

both (Batarseh and Zater, 2018). The hybrid algorithm is 

designed to overcome the shortcomings of both methods 

(Batarseh and Zater, 2018). It starts with the FLC process, 

bringing it closer to the MPP. The system then proceeds to the 

next step, i.e., P&O, where the power values of two successive 

points are compared, and the required perturbation is 

determined. The duty cycle is adjusted in every iteration, 

bringing the system closer to the MPP. Figure 17 depicts the 

algorithm flowchart of the Hybrid FLC-P&O method. 

2.4.3. Hybrid PSO-P&O MPPT 

Figure 18 depicts the algorithm flowchart of the Hybrid 

PSO-P&O method. Classical MPPT, such as the P&O method, 

tracks the initial LMPP and then converges on it. However, 

optimization MPPT algorithms, like PSO, have been suggested 

to trace the GMPP. The demerit of the PSO algorithm is that 

for large search spaces, the time taken to converge at the GMPP 

is comparatively long. This results in a hybrid algorithm that 

tracks GMPP using both P&O and PSO side by side. Due to the 

lesser complexity and higher tracking efficiency of P&O, it is 

initially used to track the LMPP. Afterward, PSO is employed 

to hunt for the GMPP. The advantage of using the hybrid PSO-

P&O is that P&O is initially used to reduce the search space for 
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PSO. This leads to a reduction in the time required by PSO to 

reach convergence (Figueiredo et al., 2021; Lian et al., 2014). 

2.4.4. Hybrid Fuzzy - PSO MPPT 

In this approach, PSO is hybridized with FLC. This 

combination is advantageous because it requires fewer 

parameter adjustments and less mathematical calculations. This 

reduced need for parameter adjustments leads to the design of 

membership functions with better-optimized base rules ( 

Ishaque et al., 2012). 

The system’s non-linearities are overcome with the help of 

fuzzy rules. Furthermore, to obtain optimized solutions, it is 

imperative to design the membership functions to function 

under PSCs. In this approach, PSO assists in the formation of 

the membership functions and the fine-tuning of the control 

rules (Mahdi et al., 2020 ). This enables us to avoid the use of 

a PI controller, thus reducing switching losses. One 

consideration is that some areas for trial and error and 

approximation must be considered while designing fuzzy logic 

rules, which are to be inferred from human intelligence. The 

algorithm flowchart of the Hybrid Fuzzy-PSO method is 

depicted in Figure 1 

 

 
 

Figure 16. Algorithm for 

Hybrid FSCC-P&O MPPT 

method. 

Figure 17. Algorithm for 

Hybrid FLC-P&O MPPT 

method 

 

 

Figure 18. Algorithm for 

Hybrid PSO-P&O MPPT 

method. 

Figure 19. Algorithm for 

Hybrid Fuzzy - PSO MPPT 

method 

 

3. DISCUSSION AND RECOMMENDATIONS 

PV systems necessitate MPPT controllers to maximize 

power harvest, making the selection of the appropriate 

controller crucial due to its associated advantages and 

disadvantages. Various algorithms exhibit distinct features, and 

the aspects chosen for comparison in this review are pivotal 

considerations in decision-making. Table 1 presents a 

comparative analysis of the algorithms explored in this study, 

focusing on cost, complexity level, tracking accuracy, and the 

number of sensed parameters. In Figure 20, a graphical 

representation offers a relative comparison of all algorithms in 

terms of cost, complexity level, and tracking accuracy. The 

primary objective of this grading system is to streamline the 

selection of methods based on common parameters. The 

analysis indicates that Perturb and Observe (P&O), Incremental 

Conductance (INC), Fractional Open Circuit Voltage (FOCV), 

Fractional Short Circuit Current (FSCC), and Ripple 

Correlation Control (RCC) fall under the classical classification 

of MPPT algorithms, exhibiting lower accuracy under partial 

shading conditions. Intelligent, optimization, and hybrid MPPT 

algorithms prove more adept at tracking GMPP and LMPP in 

partial shading scenarios. Moreover, Fractional Open Circuit 

Voltage (FOCV) and Fractional Short Circuit Current (FSCC) 

algorithms emerge as cost-effective and straightforward, 

requiring fewer parameters for sensing. On the other hand, 

algorithms like Ripple Correlation Control (RCC), Fuzzy Logic 

Control (FLC), Artificial Neural Networks (ANN), Grey Wolf 

Optimization (GWO), and Hybrid Fuzzy-PSO MPPT 

demonstrate high tracking accuracy. The study suggests further 

research into simplifying MPPT algorithms beyond classical 

methods to mitigate production costs and enhance commercial 

implementation.  
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Figure 20. Relation of cost, complexity level, and tracking accuracy for Various MPPT algorithms. 
 

Table 1. Comparative analysis of various Classical, Intelligent, Optimization Based and Hybrid MPPT algorithms. 

 
MPPT Algorithms Cost Complexity Level Tracking Accuracy Sensed Parameters 

P&O (Perturb and Observe method Expensive Complex Medium Voltage, Current 
INC (Incremental Conductance method) Expensive Complex Medium Voltage, Current 
Fractional Open Circuit Voltage (FOCV) Inexpensive Simple Low Voltage 
Fractional Short Circuit Current (FSCC) Inexpensive Simple Medium Current 

Ripple Correlation Control (RCC) Expensive Complex High Voltage, Current 
Fuzzy Logic Control (FLC) Expensive Medium High Voltage, Current 

Artificial Neural Networks (ANN) Expensive Medium High Irradiation, Temperature 
Particle Swarm Optimization (PSO) Affordable Medium Medium Voltage, Current 

Grey Wolf Optimization (GWO) Affordable Simple High Voltage 
Ant Colony Optimization (ACO) Affordable Simple Medium Voltage, Current 

Artificial Bee Colony (ABC) Expensive Simple Medium Voltage, Current 
Hybrid FSCC-P&O MPPT Expensive Simple High Voltage, Current 
Hybrid FLC-P&O MPPT Expensive Complex High Voltage, Current 
Hybrid PSO-P&O MPPT Affordable Medium to Complex Medium Voltage, Current 

Hybrid Fuzzy-PSO MPPT Very Expensive Simple High Voltage, Current 

 

4. CONCLUSIONS 

This paper reviewed fifteen MPPT algorithms across 

different categories, comparing them on various parameters in 

a concise manner. Additionally, the paper emphasizes the 

necessity of MPPT algorithms, driving extensive research in 

the field. The detailed review study explains procedures using 

flowcharts for each MPPT algorithm, along with their 

respective benefits and drawbacks. 

Out of all the algorithms in the literature, fifteen distinct 

MPPT algorithms were investigated, classified, and compared 

for faster and more efficient Maximum Power Point (MPP) 

tracking. The analysis concludes that P&O, INC, FOCV, 

FSCC, and RCC fall under the classical classification of MPPT 

algorithms and are less accurate and reliable under uniform 

irradiation conditions only. To overcome this limitation, 

intelligent MPPT algorithms like FLC and ANN were 

introduced, demonstrating higher accuracy in various 

irradiation conditions but requiring extensive data storage. 

Furthermore, Optimization MPPT algorithms such as GWO, 

ACO, ABC, and PSO were introduced, utilizing bio-inspired 

algorithms that could work without the need for large system 

studies, unlike intelligent algorithms. However, these 

algorithms come with their own set of disadvantages, such as 

slower tracking speed compared to intelligent algorithms. To 

address the drawbacks of both intelligent and optimization 

algorithms, a recent introduction is hybrid algorithms, which 

merge two or more of these algorithms. This study aims to 

highlight advancements in this area, promoting further research 

and providing a guide for individuals working in the field to 

select suitable MPPT algorithms for specific applications. 
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MPP Maximum power point 

MPPT Maximum power point tracking 

Iph Photon current 

ID Diode current 

RS Series resistance 

RSh Shunt resistance 

D Diode 

V PV cell output voltage 

I PV cell output current 

P PV cell output power 

T Temperature 

α  Duty Cycle 

K Iteration 

Voc Open circuit voltage 

Vmodule Module voltage 

Vmpp Maximum power point voltage 

Isc Short circuit current 

Imodule Module current 

Impp Maximum power point current 

P&O Perturb and Observe method 

INC Incremental Conductance method 

FOCV Fractional Open Circuit Voltage 

FSCC Fractional Short Circuit Current 

RCC Ripple Correlation Control 

FLC Fuzzy Logic Control 

ANN Artificial Neural Networks 

Wij Weights in ANN 

PSO Particle Swarm Optimization 

GWO Grey Wolf Optimization 

ACO Ant Colony Optimization 

ABC Artificial Bee Colony 

GMPP Global maximum power point 

LMPP Local maximum power points 
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