Document Type : Research Article


Department of Basic Science, University of Maragheh, Maragheh, Iran


Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, ZnS quantum dots (QDs) were fabricated on the ZnO NRs (reference cell) by SILAR technique with different number of cycles. The effect of the number of SILAR cycle (n) on structural and photovoltaic properties was studied. The optimum number of SILAR cycles for ZnS QDs was obtained (n=4). Experimental results showed that using ZnS QDs as light absorber material is an effective way to improve device performance. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The maximum power conversion efficiency of 3.59% in the inverted configuration of ITO/ZnO film/ZnO NR(20)/ZnS(n) QDs/P3HT/PCBM/Ag hybrid solar cell was achieved for a device based on ZnS(4) under an illumination of one Sun (AM 1.5G, 100 mW/cm2)


1.     Yuan, Z.L., Tao, S.L., Yu, J.S. and Jiang, Y.D., "Optical properties of 4 (Dicyanomethylidene)-6-(4-dimethylaminostyryl)-2-methyl-4H-pyran nanoparticles prepared by reprecipitation", Chemistry Letters, Vol. 39, No. 3, (2010), 302-303.
2.     Yu, J.S., Yuan, Z.L. Xie, G.Z. and Jiang, Y.D., "Preparation, properties, and applications of low-dimensional molecular organic nanomaterials", Journal of Electronic Science and Technology, Vol. 8, No. 1, (2010), 3-9.
3.     Huang, Q., Fang, L., Chen, X. and Saleem, M., "Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells", Journal of Alloys and Compounds, Vol. 509, No. 39, (2011), 9456– 9459.
4.     Garnett, E.C. and Yang, P., "Silicon nanowire radial p-n junction solar cells", Journal of the American Chemical Society, Vol. 130, No. 29, (2008), 9224–9225.
5.     Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P., "Nanowire dye-sensitized solar cells", Nature Materials, Vol. 4, (2005), 455–459.
6.     Zhong, M., Yang, D., Zhang, J., Shi, J.Y., Wang, X.L. and Li, C., "Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification", Solar Energy Materials and Solar Cells, Vol. 96, (2012), 160–165.
7.     Myung, Y., Kang, J.H., Choi, J.W., Jang, D.M. and Park, J., "Polytypic ZnCdSe shell layer on a ZnO nanowire array for enhanced solar cell efficiency", Journal of Materials Chemistry, Vol. 22, (2012), 2157–2165.
8.     Sayama, K., Sugihara, H. and Arakawa, H., "Photo-electrochemical properties of aporous Nb2O5 electrode sensitized by a ruthenium dye", Chemistry of Materials, Vol. 10, (1998), 3825–3832.
9.     Ferrere, S., Zaban, A. and Gregg, B.A., "Dye sensitization of nano-crystalline tin oxide by perylene derivatives", Journal of physical Chemistry B, Vol. 101, (1997), 4490–4493.
10.   Keis, K., Lindgren, J., Lindquist, S.E. and Hagfeldt, A., "Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes", Langmuir, Vol. 16, (2000), 4688–4694.
11.   Yang, P., Yan, H., Mao, S., Russo, R. J. Johnson, Saykally, R., Morris, N., Pham, J., He, R. and Choi, H.J., "Controlled Growth of ZnO Nanowires and Their Optical Properties", Advanced  Functinal  Materials, Vol. 12, No. 5, (2002), 323-331.
12.   Xia, J.B. and Zhang, X.W., "Electronic structure of ZnO wurtzite quantum wires", The Europen Physical Journal B, Vol. 49, (2006), 415-420.
13.   Baruah, S. and Dutta, J., "Hydrothermal growth of ZnO nanostructures", Science and Technology of Advanced Materials, Vol. 10, No. 1, (2009), 013001-013018.
14.   Park, W.I. and Yi, G.C., "Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN", Advanced Materials, Vol. 16, No. 1, (2004), 87-90.
15.   Li, L. M., Du, Z.F., Li, C.C.,  Zhang, J. and Wang, T.H., "Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature", Nanotechnology, Vol. 18, No. 35, (2007), 355606-355611.
16.   Lockett, A.M., Thomas, P.J. and O’Brien, P., "Influence of seeding layers on the morphology, density, and critical dimensions of ZnO nanostructures grown by chemical bath deposition", Journal of Physical Chemistry C, Vol. 116, (2012), 8089–8094.
17.   Liu, J.P., Huang, X.T., Li, Y.Y., Ji, X.X., Li, Z.K., He, X. and Sun, F.L., "Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission", Journal of Physical Chemistry C, Vol. 111, (2007), 4990–4997.
18.   Vayssieres, L., "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions", Advanced Materials, Vol. 15, (2003), 464-466.
19.   Chen, L.Y., Yin, Y.T., Chen, C.H. and Chiou, J.W., "Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method", The Journal of Physical Chemistry C, Vol. 115, (2011), 20913–20919.
20.   Vanecek, M.,  Neykova, N., Babchenko, O.,  Purkrt, A., Poruba, A., Remes, Z., Holovsky, J., Hruska, K., Meier, J. and Kroll, U., "New 3-dimensional nanostructured thin film silicon solar cells", in: Proceedings of the 25th European Photovoltaic Solar Energy Conference, (2010), 2763–2766.
21.   Kuang, Y., Werf, K.H.M., Houweling, Z.S. and Schropp,R.E.I., "Nanorod solar cell with an ultrathin a-Si: H absorber layer", Applied Physics Letters, Vol. 98, (2011), 113111/1-113111/3.
22.   Malek, M.F., Sahdan, M.Z., Mamat, M.H., Musa, M.Z., Khusaimi, Z., Husairi, S.S., Md Sin, N.D. and Rusop M., "A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells", Applied Surface Science, Vol. 275, (2013), 75– 83.
23.   Olson, D.C., Lee, Y.J., White, M.S., Kopidakis, N., Shaheen, S.E., Ginley, D.S., Voigt, J.A. and Hsu, J.W.P., "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices", The Journal of Physical Chemistry C, Vol. 111, (2007), 16640–16645.
24.   Takanezawa, K., Tajima, K. and Hashimoto, K., "Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer", Applied Physics Letters, Vol. 93, (2008), 1–3.
25.   Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E. and Ginley, D.S., "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites", Thin Solid Films, Vol. 496, No. 1, (2006), 26–29.
26.   Peiro, A.M., Ravirajan, P., Govender, K., Boyle, D.S., O’Brien,P., Bradley, D.D.C., Nelson, J. and Durrant, J.R., "Hybrid polymer/metal oxide solar cells based on ZnO columnar structures", Journal of Materials Chemistry,Vol. 16, (2006), 2088–2096.
27.   Peng, Z.A. and Peng, X., "Mechanisms of the Shape Evolution of CdSe Nanocrystals", Journal of The American Chemical Society, Vol. 123, No. 7, (2001), 1389-1395.
28.   Yu, W.W., Qu, L.H., Guo, W.Z. and Peng, X.G.,  "Experimental Determination of the Extinction Coefficient of CdTe, CdSe, CdS Nanocrystals", Chemistry of Materials, Vol. 15, (2003), 2854-2860.
29.   Lewis, N.S., "Toward Cost-Effective Solar Energy Use", Science, Vol.  315, (2007), 798-801.
30.   Denzler, D., Olschewski, M. and Sattler, K., "Luminescence studies of localized gap states in colloidal ZnS nanocrystals", Journal of Applied Physics, Vol. 84, (1998), 2841– 2845.
31.   Nasr, T. B., Kamoun, N. and Guasch, C., "Structure, surface composition, and electronic properties of zinc sulphide thin films", Materials Chemistry and Physics, Vol. 96, (2006), 84–89.
32.   Deulkara, S.H., Bhosalea, C.H. and Sharonb, M., "A comparative study of structural, compositional, thermal and optical properties of non stoichiometric (Zn, Fe) S chalcogenide pellets and thin films", Journal of Physics and Chemistry of Solids, Vol. 65, (2004), 1879–1885.
33.   Vidal, J., Melo, O., Vigil, O., Lopez, N., Contreras-Puente G. and Zelaya-Angel, O.,  "Influence of magnetic field and type of substrate on the growth of ZnS films by chemical bath", Thin Solid Films, Vol. 419, (2002), 118–123.
34.   Elidrissi, B., Addou, M., Regragui, M., Bougrine, A., Kachouane, A. and  Bernede, J. C., "Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis", Materials Chemistry and Physics, Vol. 68, (2001), 175-179.
35.   Pathan, H.M. and Lokhande, C.D., "Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method", Bulletin of Materials Science, Vol. 27, No. 2, (2004), 85–111.
36.   Joo, J., Kim, D., Yun, D.J., Jun, H., Rhee, S.W., Lee, J.S., Yong, K., Kim, S. and Jeon, S., "The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method", Nanotechnology, Vol. 21, (2010), 325604-325609.
37.   Im, S.H., Kim, H.J. and Seok, S.I., "Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method", Nanotechnology, Vol. 22, (2011) ,395502-395506.
38.   Chen, Z. and Gao, L., "A facile route to ZnO nanorod arrays using wet chemical method", Journal of Crystal Growth, Vol. 293, (2006), 522–527.
39.   Li, Q.C., Kumar, V., Li, Y., Zhang, H., Marks, T.J. and Chang, R.P.H., "Fabrication of ZnO nanorods and nanotubes in aqueous solutions", Chemistry of Material, Vol. 17, (2005), 1001-1006.
40.   Hullavarad, S., Hullavarad, N., Look, D. and Claflin, B., "Persistent photoconductivity studies in nanostructured ZnO UV sensors", Nanoscale Research Letters,Vol. 4, No. 12, (2009), 1421-1427.
41.   Wang, Z.L., Kong, X.Y. and Zuo, J.M.," Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces", Physical Review Letters, Vol. 91, (2003), 18550/1-18550/4.
42.   Shockley, W. and Queisser, H.J., "Detailed balance limit of efficiency of p–n junction solar cells", Journal of Applied Physics, Vol. 32, No. 3, (1961), 510–519.
43.   Nozik, A.J., "Quantum dot solar cells", Physica E, Vol. 14, (2002), 115–120.
44.   Carlson, B., Leschkies, K., Aydil, E.S. and Zhu, X.Y., "Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (1010) Interfaces", Journal of Physical Chemistry C, Vol. 112, (2008), 8419–8423.
45.   Novoselov, K.S. and Castro Neto, A.H., "Two-dimensional crystals-based heterostructures: materials with tailored properties",  Physica Scripta, Vol. 146, (2012) 014006 (6pp).
46.   Dixit, S.K., Madan, S., Madhwal, D., Kumar, J., Singh, I., Bhatia, C.S., Bhatnagar, P.K. and Mathur, P.C., "Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell", Organic Electronics, Vol. 13, (2012), 710–714.
47.   Lim, D. C., Shim, W.H., Kim, K.D., Seo, H.O., Lim, J.H., Jeong, Y.,  Kim, Y.D. and Lee, K., "Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells", Solar Energy Materials and Solar Cells, Vol. 95, (2011), 3036–3040.
48.   Nikabadi, H.R., Shahtahmasebi, N., Rokn-Abadi, M.R., Bagheri Mohagheghi, M.M. and Goharshadi, E.K., "Gradual growth of gold nanoseeds on silica for SiO2@gold homogeneous nano core/shell applications by the chemical reduction method", Physica Scripta, Vol. 87, (2013), 025802 (5pp).
49.   Zhang, L., Qin, D., Yang, G. and Zhang, Q., "The investigation on synthesis and optical properties of ZnS:Co Nanocrystals by using hydrothermal method", Chalcogenide Letters, Vol. 9, (2012), 93-98.
50.   Palve, A. M. and Garje, S. S., "A facile synthesis of ZnS nanocrystallites by pyrolysis of single molecule precursors, Zn (cinnamtscz)2 and ZnCl2 (cinnamtsczH)2", Bulletin of Materials Science, Vol. 34, (2011), 667–671.