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A B S T R A C T  
 

Fuel cells are potential candidates for storing energy in many applications; however, their implementation is 
limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the 
most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The 
ANFIS method is implemented to select highly influential parameters for proton exchange membrane (PEM) 
element of fuel cells. Seven effective input parameters are considered including four parameters of semi-
empirical coefficients, parametric coefficient, equivalent contact resistance, and adjustable parameter. 
Parameters with higher influence are then identified. An optimal combination of the influential parameters is 
presented and discussed. The ANFIS models used for predicting the most influential parameters in the 
performance of fuel cells were performed by the well-known statistical indicators of the root-mean-squared 
error (RMSE) and coefficient of determination (R2). Conventional error statistical indicators, RMSE, r, and R2, 
were calculated. Values of R2 were calculated as of 1.000, 0.9769, and 0.9652 for three different scenarios, 
respectively. R2 values showed that the ANFIS could be properly used for yield prediction in this study. 

1. INTRODUCTION1 

1.1. Motivation 

Fossil fuels are the most common energy resources in the 
world. This study chose to investigate clean and renewable 
energy sources for reasons such as fossil fuel depletion and 
environmental pollution [1]. Hydrogen is an abundant source 
of renewable energy in the world, which can be utilized by 
fuel cells [2]. Air pollution, climate change, and numerous 
environmental hazards are the prime examples of the 
consequence of the world’s excessive dependence on fossil 
fuels [3]. The tendency for using different renewable energies 
is extremely important because of many advantages such as 
lower price, availability, environmentally friendliness, and 
most importantly, sustainable economic development [4]. 
Wind is another source of clean energy, which is clean and 
abundant in many parts of the world. However, it is not 
continuously available [5]. Geothermal is also another source 
of energy, which is continuously available without 
interruption. It can be used to produce clean hydrogen, too [6]. 
Photovoltaics is currently being used for numerous purposes 
like hydrogen production [7]. Solar energy is also another 
source of clean energy, which has recently been used in many 
countries [8]. There have been different researches related to 
implementing renewable energies, especially hybrid [9-12]. 
   One of the most common fuel cell applications is seen in the 
transport sector due to its advantages. Among different types 
of fuel cells, Proton Exchange Membrane ones are of great 
value that have been viable in stationary and portable 
                                                           
*Corresponding Author’s Email: Jahangiri.M@iaushk.ac.ir (M. Jahangiri) 

applications [13, 14]. They benefit from lower 
temperature/pressure ranging between 50 and 100 degrees, 
and it is a suitable replacement for alkaline types. This type is 
made of electrodes, electrolytes, catalysts, and gas diffusion 
layers whose whole system turns the chemical energy 
generated during the reaction of hydrogen and oxygen into 
electricity [15]. 
   In the process of fuel cells, oxygen reacts with hydrogen to 
generate water [16]. Fuel cells have several advantages that 
include generating electricity with minimum pollution [17]. 
   Designing the parameter for the multi-objective PEM fuel 
cell stack was performed by a hybrid adaptive neuro-fuzzy 
inference system and genetic algorithms [18]. To reveal the 
actual performance of proton exchange membrane fuel cell 
(PEMFC) and to enhance the performance of the system and 
planning the fuel cell power conditioning circuits, it is vital to 
develop a suitable model for the performance of fuel cells 
[19]. The mathematical modeling will facilitate better 
designing and testing of fuel cells and help understand the 
occurrence of potential events [20]. 
   Since the parameters of the model are related to fuel cell 
operating conditions, predicting its characteristics is one of the 
most difficult issues in modeling fuel cell systems [21]. The 
parameter estimation of PEMFC systems is a major problem 
in modeling these systems and makes the PEMFC system 
complex. Priya et al. [13] provided the basis for the present 
mathematical modeling used in this research. 
 
1.2. Literature survey 

Boas et al. [22] studied the effect of configuration parameters 
such as anode electrode size, area of membrane, design of 
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cell, and operation conditions. They used synthetic wastewater 
for a dairy manufacturing effluent to show the effects of 
configuration parameters. They also showed that different 
configuration and operation conditions were influenced by 
energy production and characteristics of biofilm. Karpenko-
Jereb et al. [23] investigated the effect of transformations in 
the quantity of the catalyst layers, layer of gas diffusion 
characteristics, and polymer electrolyte membrane on the 
capability of a PEMFC. They also compared the obtained 
values with the outputs of a referenced example. Finally, they 
showed that thickness and conductivity variations of the PEM 
and GDL had led to substantial changes in fuel cell 
performance. Chavan and Talange [24] proposed a model to 
evaluate the PEM performance of fuel cells under different 
operational conditions and, then, compared the model with 
other models. Finally, results showed that the proposed model 
was more simple and realistic than the former ones. In another 
research, Chavan and Talange [25], for the first time, applied 
the black-box system identification approach for developing a 
number of simple, yet real, models to predict the PEM 
performance of fuel cells. Li et al. [26] investigated the 
performance prediction of fuel cells by using a developed 
model considering the relationships between agglomerate 
parameters. Wu et al. [27] scrutinized the effect of operational 
parameters on the performance of PEM fuel cells. El-Fergany 
[28] utilized a technique, called Salp Swarm Optimizer (SSO), 
for defining the best values of parameters, which are 
unknown. In another study done by Fathy and Rezk [29], an 
algorithm called multi-verse optimizer was implemented for 
identifying parameters, which are optimal. 
   Mitov et al. [30] evaluated electrical parameters related to 
nine different freshwater sediment microbial fuel cells 
(SMFCs) for 20 months. The examination of data indicated 
that all SMFCs reached steady conditions after an operation 
period of 300 days. The obtained values of the electrical 
parameters showed that the performance of SMFCs enjoyed 
great reproducibility and repeatability. Rajaskar et al. [31] 
presented a new model for maximizing power with focus on 
fuel cell parameter extraction. The proposed model was 
implemented by the simple genetic algorithm (GA). They 
indicated that the proposed model converged to optimum 
extracting fuel cell parameters in a reasonable computational 
time. Priya et al. [13] proposed a mathematical model to 
estimate fuel cell parameters. They applied the GA to solve 
the proposed model. 
   Artificial neural networks (ANN) were used for the analysis 
method, because it did not need knowledge of internal system 
parameters. ANFIS is popular for selecting the most 
influential parameters of fuel cells outputs [32-34]. Verma and 
Pitchumani [35] investigated the ANFIS of prediction 
capabilities. They showed that it was an efficient method for 
dealing with uncertainties in their systems [35]. ANFIS was 
used as a powerful hybrid tool by many researchers in 
different engineering systems. 
   There are several research studies related to the application 
of ANFIS to estimate and control the behavior of engineering 
systems. Singh et al. [36] applied the neuro-fuzzy system to 
forecast Young's modulus of rock to overcome ANN 
limitations. Mostafaei [37] applied the ANFIS model to 
predict the cetane number of biodiesel fuels by implementing 
the desirability function. Vakhshouri and Nejadi [38] applied 
the ANFIS for predicting compressive strength in the case of 
self-compacting concrete. Kurnaz et al. [39] proposed an 
ANFIS method to control the location of the unmanned aerial 

vehicles (UAVs) in 3D space by considering three fuzzy logic 
modules. Yang et al. [40] investigated ANFIS and NN, 
improved by DE algorithm. Tian and Collins [41] applied an 
ANFIS method to control a flexible manipulator composed of 
two recurrent neural networks in the forward path and a fuzzy 
logic controller in the feedback control. Ekici and Aksoy [42] 
proposed an ANFIS method to predict the consumption of 
building energy in cold regions. Khajeh et al. [43] illustrated 
the effectiveness of ANFIS to forecast the solubility of carbon 
dioxide in polymers. Inal [44] evaluated the dielectric 
attributes of polyesters by an ANFIS model in a wide and 
different range of conditions. Lo and Lin [45] applied the 
ANFIS to forecast non-uniformity on surface in chemical 
mechanical polishing (CMP) processes. 
 
1.3. Novelty 

Many researchers have used the ANFIS for enhancing the 
capability of automatic learning and adaptation [35-39]. There 
have also been many other research studies that applied 
ANFIS for estimating and identifying different systems in 
real-time mode [40-45]. According to the subject literature, 
Parya et al. [13] estimated the parameters of the mathematical 
model of PEM fuel cell by the genetic algorithm method. In 
the present work, the ANFIS method was used to determine 
the parameters on which the fuel cell performance depends 
dominantly and predict the fuel cell behavior. The results of 
this method showed to be superior to the genetic algorithm in 
terms of efficiency and optimality. In fact, there are 
weaknesses in the genetic algorithm that can be covered by 
better methods such as the ANFIS method. Therefore, the 
ANFIS method is a better technique to estimate the 
parameters of a PEM fuel cell for the following reasons: 

1- If the search space is relatively small, the genetic 
algorithm works more slowly than the ANFIS method. 

2- If the objective function is well-behaved and 
relatively uniform, the ANFIS method is a better option. 

3- The existence of the fitness operator in the genetic 
algorithm and the effect of its choice on the optimal response 
is another reason that enhances the use of the ANFIS method, 
because if the fitness operator is not selected well and strong, 
then the solutions obtained from the genetic algorithm cannot 
be considered as optimal ones. 

4- Although the genetic method is a random search 
method and has a possibility of low-response blocking 
(parameter values) at the optimal localized points, it has a 
significant error in the estimation of the output variable data. 
However, this error is minimal using fuzzy if-then rules in the 
ANFIS method. 

5- On the other hand, ANFIS is one of the fuzzy-neural 
hybrid models in which the neural network and the fuzzy 
system are combined in a coordinated structure. This 
combination improves network performance and enhances the 
learning potential of the neural network. 

6- In fact, ANFIS is employed to solve nonlinear 
regression and estimate functions. In addition, the ANFIS 
method generates very low estimation error. 

   Although there are several mathematical models for 
estimating fuel cell parameters, the main objective of the 
present study is to evaluate the soft computing methods for 
tackling the performance prediction of fuel cells. ANFIS 
method has the ability to learn and predict. It can deal with 
encountered uncertainties for different systems.  In the present 

https://www.sciencedirect.com/science/article/pii/S0016236117315958
https://www.sciencedirect.com/science/article/pii/S0016236117315958
https://www.sciencedirect.com/science/article/pii/S0016236117315958
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study, the most effective parameters of a fuel cell are 
determined by the ANFIS method . Accordingly, this paper is 
outlined by giving an introduction, a methodology (modeling 
the PEM fuel cell and developing the ANFIS method), 
presenting, analyzing, and discussing the results followed by 
conclusion. 
 
2. METHODOLOGY 

2.1. PEM fuel cell model 

In this research work, the model proposed by Priya et al. [13] 
is implemented. Output voltage can be obtained by adding the 
equilibrium potential, which is denoted by ENernst, and also 
drops of voltage. There are different voltage drops in cells 
including activating, Vact, Ohmic, VOhmic, cross over, and mass 
transport Vcon. Hence, the output voltage can be calculated as 
follows: Vfc = ENernst - Vact - VOhmic - Vcon. 
   The crossover drop is usually neglected, because their 
values are small. The equilibrium potential, ENernst, can be 
calculated as follows [13]: 

2 2

-3
Nernst

-5
H O

E =1.229-0.85×10 (T-298.15)+

4.3085×10 ×T[ln(P )+0.5ln(P )]
 (1) 

   The activation losses are shown by coefficients ɛ1, ɛ2, ɛ3, 
and ɛ4, which can be calculated as follows [2]: 

2act 1 2 3 O 4V =ε +ε T+ε Tln(C )+ε Tln(i)  (2) 

   The Ohmic losses can be obtained by the following [13]: 

Ohmic m cV =i(R +R )  (3) 

where 

m
m

ρ lR =
A

 (4) 

2 2.5

m

i T i181.6[1+0.03( )+0.062( ) ( ) ]
A 303 Aρ = i T-303[λ-0.634-3( )]exp[4.18( )]
A T

 (5) 

   Concentration voltage losses can be calculated as follows 
[13]: 

con
max

IV =-bln(1- )
I

 (6) 

   Therefore, the total output voltage is given by [13]: 

2 2

2

-3
fc S

-5
H O

1 2 3 O 4 m c

max

V =N ×((1.229-0.850×10 (T-298.15)+

4.3085×10 ×T[ln(P )+0.5ln(P )])

-(ε +ε T+ε Tln(C )+ε Tln(i))-i(R +R )

I+bln(1- )
I

 (7) 

 
2.1.1. Problem definition 

For developing an acceptable model, it is necessary for the 
simulated and actual characteristics to be in agreement. Priya 
et al. [13] used the V–I and P–I characteristics for 
exemplifying the problem formulation. 

The DC power output can be given by [13]: 

P=VI (8) 

   Using the differential form of the above equation, the 
following can be written [13]: 

dP dV=V+I
dI dI

 
(9) 

mpp mpp

dV V+ =0
dI I

 (10) 

   Defining the objective function of the problem [13]: 

mpp mpp

mpp

(V ,I ) mpp

VdVMinimize(J)= +
dI I

 (11) 

subject to the following constraints: 

80.020.1 1 −≤≤− ε  

006.00008.0 2 ≤≤ ε  

0001.0000035.0 3 ≤≤ ε  

00008.00003.0 4 −≤≤− ε  

60.001.0 ≤≤ b  
00099.000008.0 ≤≤ cR  

0.2410 ≤≤ λ  

   The value of 
),( mppmpp IVdI

dV in Equation (11) can be 

determined by differentiating the basic voltage Equation (7) as 
follows [13]: 

mpp mpp

4
mpp max mpp

(V ,I ) c

T b(ε )+( )+
I I -I

dV =- l×181.6dI (R +( ))×Γ4.18(T-303)Aexp( )
T

 
 
 
 
 
 
 

 
(12) 

p

2.5 2 2
p p p

2
p

((λ-0.634)+J (0.6λ-0.038)+

J ΔT (0.217λ-0.1375-0.465J )-0.9J )
Γ=

(λ-0.634-3J )
 (13) 

mpp
p

I
J =

A
 (14) 

TΔT=
303

 (15) 

where 

p

2.5 2 2
p p p

2
p

((λ-0.634)+J (0.6λ-0.038)+

J ΔT (0.217λ-0.1375-0.465J )-0.9J )
Γ=

(λ-0.634-3J )
 (16) 

and 

mpp
p

I
J =

A
, TΔT=

303
 (17) 

   Although many parameters affect fuel cells' performance, 
seven parameters are introduced as the inputs in this research. 
Table 1 illustrates seven parameters including inputs and 
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output. The output parameter of fuel cell is determined by 
measurements [13]. 

 
Table 1. The inputs and output parameters. 

Input/output Parameters 
Input No. 1 ɛ1 
Input No. 2 ɛ2 
Input No. 3 ɛ3 
Input No. 4 ɛ4 
Input No. 5 b 
Input No. 6 Rc 
Input No. 7 λ 

Output 
mpp mpp

mpp

(V ,I ) mpp

VdVMinimize(J)= +
dI I

 

 
2.2. ANFIS method 

Jang introduced the ANFIS method in 1993 for the first time 
by combining ANN with FIS to resolve the shortcoming of 
two individual methods of ANN and FIS. The rules of ANFIS 
can be developed during the process of training [46]. 
   Figure 1 shows the ANFIS fuzzy structure in which five 
layers are used for constructing the inference system. There 
are several fixed and adjustable nodes that operate as 
membership functions (MFs) and the rules in the hidden 
layers. For explaining the procedures of the ANFIS model, 
there are two inputs of x and y and, also, one output, as 
illustrated in Fig. 1. Generally, in the ANFIS, the relationship 
between input and output is shown by “if-then” rules. 
Therefore, the rules for the inference system of Takagi and 
Sugeno [47] can be used for the following structure: 

 

 
Figure 1. The structure of ANFIS [47]. 

 
   The MATLAB software was used for developing and 
training the ANFIS model. Accordingly, the “if-then” rule 
proposed by the fuzzy Takagi and Sugeno inference system 
was used as Eq. 5 in the presence of two inputs. 

if x is A and y is C then  
f1 = p1x + q1y + r1 (18) 

   The first layer is the fuzzification layer. This layer acts as a 
source of inputs required by the next layer consisting of adaptive 
nodes with function O = µAB(x) and O = µCD(x), where 
µAB(x) and µCD(x) are the membership functions. The following 
equation expresses the selected bell-shaped MFs with the 
maximum of (1.0) and minimum of (0.0) [48]: 

µ(x) = bell(x; ai, bi, ci, di) =
1

1 + ��x−ci
ai
�
2
�
bi

 (19) 

where {ai, bi, ci, di} represents a set of functional parameters, 
which in this layer are selected to act as premise parameters, 
and 𝑥𝑥 represents the inputs. 
   The purpose of the second layer is to determine and incorporate 
the weight of each membership function. This layer involves non-
adaptive nodes that receive the signals sent by the previous layer 
and represent the membership functions of fuzzy sets related to 
each input. In this layer, the received signals are multiplied and, 
then, forwarded as follows: wi = µAB(x) ∗ µCD(y). Here, the 
efficiency of rules is illustrated by output nodes [49]. 
   Neurons of the third layer represent the pre-conditions 
corresponding to the devised fuzzy rules. This layer, which can 
also be called the rule layer, defines the level at which each rule 
starts to apply; herein, the number of the mentioned rules is equal 
to the number of layers. The nodes of this layer, which are non-
adaptive, calculate the normalized weights. Each of these nodes is 
tasked with calculating the efficacy value of one rule with respect 
to the sum of efficacy rates of all rules using the equation 
wi
∗ = wi

w1+w2
, i = 1,2. The outputs of this step will be the 

normalized efficacies [47]. In the fourth layer, which is called the 
defuzzification layer, the outputs of the inference of rules will be 
provided. This layer consists of adaptive nodes with function 
Oi
4 = wi

∗xf = wi
∗(pix + qiy + ri), where {pi, qi, r} is a variable 

set containing the resulting parameters [50]. 
   In the last layer, which is called the output layer, all inputs 
received from the previous layer will be aggregated, and resulting 
fuzzy classification outputs will be transformed into a crisp 
binary variable. This layer consists of one non-adaptive node,  
which computes the final output in  the form of the sum of all 
received signals [51], 

Oi
5 = �wi

∗xf
i

=
∑ wifi
∑ wii

 (20) 

   In the ANFIS architectures, variables are identified by means of 
a hybrid learning algorithm, which passes in the fourth layer. 
Then, a least squares estimation scheme is used to determine the 
consequent variables. The backward pass propagates the error 
rates backwards and uses the gradient decline order to 
synchronize the premise variables. 
 
3. ANALYSIS 

3.1. Evaluation of accuracy indices 
The performances of ANFIS models can be evaluated by the 
popular statistical indicators of root-mean-squared error 
(RMSE) and determination coefficient (R2). These statistical 
indices are as follows: 

1) Root-Mean-Square error (RMSE) can be obtained by [52]: 
n

2
i i

i=1
(P -O )

RMSE=
n

∑
 (21) 

2) Coefficient of Pearson Correlation (r) is as follows [52]: 
n n n

i i i i
i=1 i=1 i=1

n n n n
2 22 2

i iii
i=1 i=1 i=1 i=1

n O .P - O . P
r=

n -( O ) . n -( P )O P

     
     
     

   
   
   

∑ ∑ ∑

∑ ∑ ∑ ∑

 
(22) 

3) The determination coefficient (R2) is [52]: 
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( ) ( )

( ) ( )

2n

i i i i
i=12
n n

i i i i
i=1 i=1

O -O . P -P
R =

O -O . P -P

 
 
 
∑

∑ ∑
 (23) 

where Pi is the experimental value and Oi is the forecasting 
value. Moreover, n is the total number of tested data [52]. 
 
3.2. ANFIS results 

In this study, seven effective parameters are considered as 
input variables including four semi-empirical coefficients        
(ɛ1, ɛ2, ɛ3, ɛ4), a parametric coefficient (b), equivalent contact 
resistance (Rc), and an adjustable parameter (λ). The optimal 
combination set of inputs was determined by performing a global 
search through the given inputs. This set, shown in Table 1, is in 
fact a set that leaves the most significant impact on the output 
parameter in Equation (11). The developed ANFIS model 
consists of a number of functions dedicated to different 
combinations. The models were trained with different 
combinations of inputs to find the effective parameters, i.e., from 
one input to three inputs. The output of models was evaluated by 
the performance factor. Accordingly, the inputs with the highest 
level of impact on the prediction of the output were identified. 
The results of these operations are presented in Tables 2 to 4. 
Those input variables that had the lowest training errors exhibited 
the highest level of relevance to the output. 
   Table 2 shows that, in the case of input, the most influential 
parameter for the fuel cell’s prediction is λ (input 7) with a 
test error of 1.6884. 
   Based on Table 3, in the case of using two inputs for 
predicting the output value, the format of 2, 7 (a combination 
of 2ε and λ) has the highest role in predicting the output with 
the highest accuracy and the lowest testing error (1.7544). 
   Table 4 illustrates that, in the case of using three inputs, the 
combination of 2, 3, and 7 (ɛ2, ɛ3, and λ) has the best response 
in predicting the output value by a testing error of 1.9432. 

 
Table 2. Input influential parameter for the prediction of the fuel 

cell’s parameters (1 input). 

ANFIS model Train Test Input No. 
Number of 

inputs 
1 20.6837 19.6856 1 1 
2 20.4724 19.7992 2 1 
3 20.5420 19.8793 3 1 
4 20.7071 19.7504 4 1 
5 20.5898 20.1992 5 1 
6 20.6499 19.7693 6 1 
7 1.7162 1.6884 7 1 

 
   The results indicated that the larger the number of inputs, the 
higher the training accuracy and the lower the testing accuracy. 
The possibility of overfitting between training and testing errors 
prevents the use of more than two parameters and encourages the 
use of simplified models. The fuel-cell parameters that are 
predicted (based on inputs of Table 2 to 4) by the ANFIS scatter 
plots are shown in Figure 2. The results showed a very good 
coefficient of determination, which confirmed their validity. 
Moreover, they proved a very limited extent of 
overestimation/underestimation indicating a good level of 
precision, most notably for the case where there was only one 
input. 

Table 3. Influence of input parameters on the prediction of the fuel 
cell’s parameters (2 inputs). 

ANFIS model Train Test Inputs Number of 
inputs 

1 20.0025 19.6613 1 , 2 2 
2 20.1605 20.3996 1 , 3 2 
3 20.2707 19.7945 1 , 4 2 
4 20.0157 21.5209 1 , 5 2 
5 20.1628 20.2325 1 , 6 2 
6 1.6973 1.7295 1 , 7 2 
7 20.0794 20.0625 2 , 3 2 
8 20.2801 20.2801 2 , 4 2 
9 20.1772 20.4948 2 , 5 2 

10 20.2099 19.9632 2 , 6 2 
11 1.6547 1.7544 2 , 7 2 
12 20.4876 20.0335 3 , 4 2 
13 20.3617 20.3443 3 , 5 2 
14 19.9990 20.6101 3 , 6 2 
15 1.6685 1.8068 3 , 7 2 
16 20.5094 20.2974 4 , 5 2 
17 20.5957 19.7282 4 , 6 2 
18 1.7137 1.6859 4 , 7 2 
19 20.4619 20.5025 5 , 6 2 
20 1.6846 1.7552 5 , 7 2 
21 1.7075 1.6645 6 , 7 2 

 
 

Table 4. Influence of input parameters on the prediction of the fuel 
cell’s parameters (3 inputs). 

ANFIS model Train Test Inputs Number of 
inputs 

1 19.12 20.75 1 , 2 , 3 3 
2 19.58 19.74 1 , 2 , 4 3 
3 18.71 21.53 1 , 2 , 5 3 
4 19.16 20.34 1 , 2 , 6 3 
5 1.62 1.79 1 , 2 , 7 3 
6 19.57 20.64 1 , 3 , 4 3 
7 19.36 22.41 1 , 3 , 5 3 
8 19.35 21.36 1 , 3 , 6 3 
9 1.61 1.84 1 , 3 , 7 3 

10 19.20 22.98 1 , 4 , 5 3 
11 19.53 21.10 1 , 4 , 6 3 
12 1.62 1.82 1 , 4 , 7 3 
13 19.33 22.38 1 , 5 , 6 3 
14 1.54 1.99 1 , 5 , 7 3 
15 1.61 1.76 1 , 6 , 7 3 
16 19.85 20.46 2 , 3 , 4 3 
17 19.45 21.03 2 , 3 , 5 3 
18 19.33 21.04 2 , 3 , 6 3 
19 1.54 1.94 2 , 3 , 7 3 
20 19.89 20.96 2 , 4 , 5 3 
21 19.89 19.99 2 , 4 , 6 3 
22 1.62 1.76 2 , 4 , 7 3 
23 19.77 21.23 2 , 5 , 6 3 
24 1.54 1.84 2 , 5 , 7 3 
25 1.61 1.76 2 , 6 , 7 3 
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26 20.16 20.78 3 , 4 , 5 3 
27 19.62 21.49 3 , 4 , 6 3 
28 1.64 1.89 3 , 4 , 7 3 
29 19.86 20.72 3 , 5 , 6 3 
30 1.56 1.94 3 , 5 , 7 3 
31 1.61 1.98 3 , 6 , 7 3 
32 20.31 21.04 4 , 5 , 6 3 
33 1.63 1.86 4 , 5 , 7 3 
34 1.63 1.79 4 , 6 , 7 3 
35 1.63 1.71 5 , 6 , 7 3 
36 19.12 20.75 1 , 2 , 3 3 

 
 

 

 

 
Figure 2. ANFIS scatter plots for predicting parameters 

of fuel cells. 
As shown in Figure 1, in the case of using one input, the output of 
model and target value have a determination coefficient value of 
1. This shows the fitting of output and target values. In the case of 
two and three inputs, the correlation is deviated from the linear 
trend. Increasing the number of inputs reduces the coefficient of 
determination, such that, in the case of two variables, R2 is equal 

to 0.9769 and is 0.9652 in the case of three variables. Therefore, 
increasing the variable numbers raises the complexity of decision 
and evaluations. 
   To assess the accuracy of the predictions made by the proposed 
model, the error terms RMSE, r, and R2 were calculated and 
compared with those of other models. A summary of the 
accuracy of predictions made based on the selected fuel cell 
parameters is presented in Table 5. As shown in Table 5, the 
larger the number of inputs, the more the RMSE value. The 
RMSE value is a factor of difference between values predicted by 
the model and target values [53]; therefore, it can be concluded 
that the larger the number of inputs, the lower the prediction 
accuracy. 
   These operations were performed to reduce the number of 
inputs. Reducing the number of inputs helps raise the 
acceleration of calculations, especially in ANFIS, because one 
of the important weaknesses of ANFIS is its computational 
time if the number of inputs is high. On the other hand, 
ANFIS produces more accurate outputs. In order to use the 
ANFIS accurately and eliminate the complexity of running the 
model, one of the approaches is to reduce the numbers of 
inputs. In the present study, the afore-mentioned method was 
employed to reduce the number of inputs along with keeping 
the model accuracy. 
 
Table 5. Statistical results of the prediction of fuel cell’s parameters 

for selected inputs. 

One input 

r 0.999995 

R2 1 

RMSE 0.060688 

Two inputs 

r 0.988383 

R2 0.9769 

RMSE 3.071737 

Three inputs 

r 0.982452 

R2 0.9652 

RMSE 3.769673 

 
4. CONCLUSIONS 

The fuel cells are devices with two positive and negative 
electrodes called anode and cathode, which can generate 
electricity, from micro to mega scales, through a chemical 
reaction. The purpose of this study was to conduct a 
systematic approach of selecting the most influential 
parameters to anticipate parameters of fuel cells by using the 
ANFIS method. This method is capable of overcoming 
ambiguity in information and providing better conditions. 
Moreover, it is capable of converting the sophisticated 
multiple performance characteristics into a single multi index. 
Therefore, the method used here can enhance the multiple 
performances characterized for parameters of fuel cells. 
   The most important advantages of ANFIS are efficiency in 
computing, adaptation to the method optimization, and 
feasibility to integrate with other applications. ANFIS can be 
used for complex parameters, which act very fast to solve 
problems. For enhancing the ANFIS performance and speed, 
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the collected database was normalized. The two main models 
were used as follows: 

• The model that concentrates on simulation of 
electrochemical phenomena, heat, and mass transfer. 
• The electrochemical model that is based on semi-

empirical or empirical equations. 

   For the latest method, sets of unknown parameters                
(ɛ1, ɛ2, ɛ3, ɛ4, b, Rc, λ) were needed for determining accurate 
modeling. 
   For this research study, seven main parameters along with 
required data affecting the performance of fuel cells were 
identified. Then, ANFIS was performed and results were 
obtained in three following scenarios: 

• Forecasting and selecting the most effective fuel cell 
parameter affecting the performance. 
• Forecasting and selecting two of the most effective 

fuel cell parameter affecting the performance. 
• Forecasting and selecting three of the most effective 

fuel cell parameter affecting the performance. 

   For demonstrating the merits of the proposed models on a 
more definite and tangible basis, the accuracy of prediction by 
different models was compared with each other. The 
performances of the ANFIS models for the prediction of the 
most influential parameters were calculated by the well-
known statistical indicators of the root-mean-squared error 
(RMSE) and coefficient of determination (R2). Conventional 
error statistical indicators, RMSE, r, and R2 were calculated. 
R2 for three different scenarios gained values of 1.000, 0.9769, 
and 0.9652, respectively. The R2 values showed that ANFIS 
could be properly used for yielding prediction in this study. 
 
5. FUTURE STUDY 

Since there are several influential factors affecting the 
performance of PEMFC such as air temperature, air pressure, 
input relative humidity of the anode and cathode, and 
membrane thickness, it is suggested that researchers working 
in this field consider these criteria and conduct further studies 
to ascertain their impact on the performance of PEMFC. 
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NOMENCLATURE 
A Cell active area (cm2) 
ANFIS Adaptive neuro-fuzzy inference system 
ANN Artificial neural network 
b Parametric coefficient (V) 
𝐶𝐶𝑂𝑂2 Oxygen concentration in catalytic interface 
Enernst Thermodynamic potential of cell 
GA Genetic algorithm 
I Actual current density of the cell (A/cm2) 
Imax Maximum value for I 
Impp Current at maximum power point 
icell Cell current 
J Minimization function involving the parameters 
L Thickness of PEM (cm) 
Ns Number of cells 
PH2 Partial pressure for hydrogen (atm) 
PO2 Partial pressure for oxygen (atm) 

PEM Proton exchange membrane 
PEMFC Proton exchange membrane fuel cell 
Pmax Maximum value of power 
R2 coefficient of determination  
Rc Equivalent contact resistance 
Rm Equivalent membrane resistance 
RMSE Root-mean-squared error 
SSO Salp swarm optimizer  
T Cell absolute temperature (K) 
V Cell voltage (V) 
Vact Drop of voltage due to activation of anode and cathode 
Vcon Diffusion potential 
Vfc Output voltage of fuel cell 
Vmpp Voltage at maximum power point 
VOhmic Ohmic voltage drop 
ε1. ε2. ε3. ε4 Semi-empirical coefficients 
Γ Basic voltage 
λ Adjustable parameter 
ρm Membrane specific resistivity 
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