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A B S T R A C T  

 

In the present study, a modified pyramid-solar-still (MPSS) with new multiple stepped basin areas was 

investigated in the weather conditions of Qena, Egypt, at a location of (Latitude: 26.16°, Longitude: 32.71°). 

Boosting the output of the pyramid solar still is the primary focus of the proposed strategy. To achieve this, four 

basins were built and integrated into the pyramid solar still, with their size increasing in proportion to the surface 

area of the condensing glass. A 25% increase in basin area per square meter of solar still was achieved compared 

to conventional pyramid solar still (CPSS) with the same condensing cover area. The thermal performance and 

productivity of the suggested solar still were demonstrated by developing energy balance equations for 

temperature components and then analytically computing their solutions. The results showed compatibility 

between theoretical and experimental results. The highest yields for CPSS were 2524 mL/m2, and for MPSS, 

they were 3415 mL/m2. The stepped area enhanced the yield by 35.3% compared with CPSS. Moreover, the 

efficiency of CPSS and MPSS was recorded as 23.5% and 31.7%, respectively. Furthermore, the maximum yield 

of freshwater was obtained for the northern condensing cover, with the recorded value reaching 1174 mL/m2. 

Distilled water under the proposed system would cost $0.0179 per liter. Finally, the TDS and pH levels are in 

accordance with WHO recommendations for the quality of drinking water. 

https://doi.org/10.30501/jree.2024.424544.1729 

1. INTRODUCTION1 

The importance of using solar distillation techniques to 

provide clean water to the public cannot be overstated. Despite 

their convenience and low cost, these distillation techniques 

have a low yield. New designs, shapes, and materials  are 

employed to boost the rate of evaporation within stills and, in 

turn, increase the amount of freshwater that can be produced 

(A. Abdullah, Essa, & Omara, 2021; AlQdah et al., 2022). The 

most basic technique of solar distillation is the solar still, which 

provides drinkable water for remote communities and 

individual residences in dry places (Ahmed H. Mohammed, 

Attalla, & Shmroukh, 2021). The low output of traditional stills 

has piqued the curiosity of researchers looking for ways to 

maximize distillate yield via novel arrangements. Successful 

modifications include many combinations of designs and 

shapes that were investigated experimentally and theoretically 

(Ahmed H. Mohammed, Shmroukh, Ghazaly, & Kabeel, 

2023a) Several studies have compared various pyramid solar 

still designs to find those that provide the highest distillate 

output with the least amount of wasted energy. Pyramid solar 
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stills are a tried-and-true method of making salty water potable 

(Saravanavel, Vijayakumar, SathishKumar, Meignanamoorthy, 

& Ravichandran, 2020). Many researchers investigated the 

triangular and square shapes of pyramid solar still. Most 

research into improving the still's efficiency has focused on 

various types of fins, energy storage materials, heat pipes, and 

wick materials (Al-Madhhachi & Smaisim, 2021; Fallahzadeh, 

Aref, Gholamiarjenaki, Nonejad, & Saghi, 2020; Javad Raji 

Asadabadi & Sheikholeslami, 2022; Kumar et al., 2017; 

Ahmed H. Mohammed, Shmroukh, Ghazaly, & Kabeel, 2023b; 

Saravanan & Murugan, 2020; Sathyamurthy, Kennady, 

Nagarajan, & Ahsan, 2014; Taamneh & Taamneh, 2012). (Al-

Madhhachi & Smaisim, 2021) built and tested a square 

pyramid-solar still at Al Kufa, Iraq, throughout four seasons, 

with a maximum production of 2.2 L/m2. Moreover, (Kabeel, 

El-Maghlany, Abdelgaied, & Abdel-Aziz, 2020) investigated 

how the effectiveness of an MPSS was assessed by placing a 

PCM tank underneath the absorber surface and installing a 

hollow fin array at the basin plate. This configuration resulted 

in the highest daily output of 8.1L/day. Furthermore, 

(Fallahzadeh et al., 2020) combined a pyramid-shaped solar-

https://doi.org/10.30501/jree.2024.424544.1729
https://en.merc.ac.ir/
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
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still with solar collector and got a yield of 6.97 L/m2. (Kabeel, 

Abdelgaied, & Almulla, 2016) examined how a square pyramid 

solar still's performance varied depending on the angle of its 

glass cover in Tanta, Egypt. The results showed that the 

cumulative water production was almost 4.13 L/m2 per day for 

a tilted glass covering of 30.47o, 3.5 L/m2 per day for a tilted 

glass covering of 40o, and 2.93 L/m2 per day for a tilted glass 

covering of 50o. (Kabeel, Teamah, Abdelgaied, & Abdel Aziz, 

2017) compared the distillate production of a solar still 

equipped with PCM to that of a conventional still (3.5 L/m2), 

and found that the latter produced around 6.6 L/m2. Moreover, 

(A. S. Abdullah et al., 2023) tested a cords pyramidal solar still 

with a variety of fabrics functioning as burlap wicks and found 

that it was able to produce 8 liters per square meter each day. 

(Abdelgaied, Abdulla, Abdelaziz, & Kabeel, 2022) studied a 

modified stepped single slope solar still and achieved a yield of 

9.79 L/m2. Moreover, (Sharshir et al., 2022) evaluated 

trapezoidal pyramid solar still with reflector, and their results 

showed that the productivity of modified pyramid solar still 

reached up to 127.27 % over that of the traditional one. (Elgendi 

et al., 2022) designed a pyramid-solar-still with automatic feed 

water. Changing the form of the glass cover and the basin area, 

which are two examples of the numerous methods and studies 

that have been conducted to increase solar still production 

(Ensafisoroor, Khamooshi, Egelioglu, & Parham, 2016; 

Khalili, Taheri, & Nourali, 2023; Parsa et al., 2022), includes 

using sponge (Arjunan, Aybar, & Nedunchezhian, 2011), 

employing a double basin (Ayoub, Al-Hindi, & Malaeb, 2015; 

Suneja & Tiwari, 1999), examining the effect of wind speed (A. 

A. El-Sebaii, 2000), utilizing an air blower (Joy, Antony, & 

Anderson, 2018), exploring glass cover angle and thickness 

(Khalifa, 2011), and investigating water depth and free surface 

area (Kalidasa Murugavel, Chockalingam, & Srithar, 2008; A. 

K. Tiwari & Tiwari, 2006). A quick survey of the relevant 

literature reveals that past research has focused on studying 

how to improve solar stills via different means. Due to 

favorable climatic circumstances in Qena, Egypt, the current 

research, experimental assessment, and mathematical model of 

an MPSS with new stepped basin areas are conducted there. 

The primary goal of the suggested technique is to enhance the 

pyramid solar still output. To accomplish this, four basins were 

built and integrated into the pyramid solar still, with the size of 

each basin progressively decreasing as it moved closer to the 

condensing cover top. The overall basin surface per square 

meter of MPSS is 25% more than it would be in a CPSS with 

the same condensing cover area. 

2. Methodology 

The pyramid solar still was made from galvanized steel that 

was 2 mm thick. The shape of the black basin is square. The top 

of the basin is made of a 4-mm-thick acrylic cut at a 26-degree 

angle. The main reason for the selection of this angle is that the 

productivity of solar stills will reach its maximum at a cover tilt 

angle that is close to the latitude angle of the site, and the 

latitude of the test site is 26.16° (Khalifa, 2011), (Kabeel et al., 

2016). 

 

 Figure 1. Schematic diagram of the proposed system. 
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The rough edges of the acrylic sheets were finished by 

welding four troughs onto each end. The distilled liquid was 

first collected in the troughs before being transferred to the 

proper storage vessels. Glass wool sheets were used to insulate 

the solar still and prevent heat loss via any of the connections 

on the sides or walls. A plastic pipe was used to transport the 

distillate from the two solar still collection sites to the waiting 

flasks. Two solar distillers, a saltwater storage tank, and other 

components are seen in Figure 1 and Figure 2. One solar 

distiller was the MPSS, while the other one served as a 

reference (CPSS). The MPSS consists of four stepped basins 

areas (surface 1; 0.6×0.6 m^2, surface 2; 0.25×0.25 m^2, 

surface 3; 0.15×0.15 m^2, surface 4; 0.07×0.07 m^2) with a 

total area of 0.4499 m^2 and four condensers, while the CPSS 

has a total area of 0.36 m^2 without any stepped area. The total 

seawater MPSS has been gradually divided among the four 

basins, and the amount of seawater inside each device was 10 

L. The temperatures of the condensing cover, water, and 

ambient were measured by 14 K-type thermocouples. 

Additionally, the performance of the solar distillers was 

estimated using measurements of the solar irradiance, 

humidity, and distillate quantity, while each measurement was 

recorded hourly. Parameters, precision, and allowable margins 

of error for various pieces of measuring equipment used are 

detailed in Table 1. Finally, testing took place during the period 

from 9 a.m. to 6 p.m. The error analysis was employed using 

the following equation (Holman & Lloyd, 1955; A. H. 

Mohammed, Attalla, & Shmroukh, 2022). 

𝛿𝑅 = √[
𝜕𝑅

𝜕𝑥1
𝑥1]

2
+  [

𝜕𝑅

𝜕𝑥2
𝑥2]

2
+  … . + [

𝜕𝑅

𝜕𝑥𝑁
𝑥𝑁]

2
              (1) 

where 𝑥1, 𝑥2,…, 𝑥𝑁 are the uncertainties of the independent 

parameters. Table 1 contains all computed tool errors. 
 

 

 

 

 

Table 1. Measuring instruments specifications.. 

Instrument Type Dimension units 

Range 

and 

accurac

y 

Standard 

uncertaint

y 

Thermocoupl

e 

K-

type 

Temperatur

e 
°C 

-50 to 

150, 

±0.5°C 

± 0.85 °C 

Digital 

pyranometer 
CM4 

Solar 

radiation 

W/m

² 

0 

to4000, 

±1 

W/m² 

± 0.54 

W/m² 

Humidity 

meter 

UT33

3 
Humidity % 

0 to 

100%, 

±5%RH 

±2.9％RH 

Graduated 

cylinder 
Glass Yield L 

0 to 3, 

±5mL 
±2.89 mL 

Data logger 
CMC-

99 
---------- ----- --------- ---------- 

 

3. MATHEMATICAL MODEL OF THE SYSTEM 

The MPSS heat flow is shown in Figure 3. This energy-

balanced solution was calculated under the following 

conditions:  

a) There is currently no steam venting. 

b) Because of the sturdy framework, no warm air will 

escape. 

 

Figure 3. Schematic of the heat flow through the parts of MPSS. 

Figure 2. (a) Experimental test rig, (b) measuring devices. 
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The condensing coverings' energy-balance equation under 

steady-state conditions is expressed as (Alawee et al., 2021; A. 

El-Sebaii & Khallaf, 2020; Velmurugan et al., 2009): 

I(t)𝐴𝑔α𝑔 + 𝑄c,w− g +  𝑄r,w− g + 𝑄e,w− g = 𝑄r,g− s + 𝑄c,g− s (2) 

The water energy balance is (Alawee et al., 2021),(A. El-

Sebaii & Khallaf, 2020): 

I(t)𝐴𝑤α𝑤τ𝑔 + 𝑄c,b− w = 𝑚𝑤𝑐𝑝𝑤
𝑑𝑇𝑤

𝑑𝑡
+ 𝑄c,w− g +

 𝑄r,w− g + 𝑄e,w− g  
(3) 

The formula for the absorber's energy balance is (Alawee et 

al., 2021; A. El-Sebaii & Khallaf, 2020): 

I(t)𝐴𝑏α𝑏τ𝑔τ𝑤 = 𝑄c,b− w (4) 

where the water-basin-convective-heat-transfer is (Alawee 

et al., 2021; A. El-Sebaii & Khallaf, 2020): 

𝑄𝑐,𝑏−𝑤 = ℎ𝑐,𝑏−𝑤𝐴𝑏(𝑇𝑏 − 𝑇𝑤) (5) 

ℎ𝑐,𝑏−𝑤 is determined by Ref. (Malaeb, Aboughali, & 

Ayoub, 2016) 

ℎ𝑐,𝑏−𝑤 = 0.2 [
𝑘𝑤

𝐿
] 𝑅𝑎0.26 (6) 

(Ra) is the modified Rayleigh number. 

𝑅𝑎 = [
𝑔. 𝛽. 𝜌𝑤.𝐿

3 

𝜇𝑤. 𝐷 
] . Δ𝑇′ (7) 

𝛽 is the thermal expansion coefficient . 

𝛽 =
2

𝑇𝑏 + 𝑇𝑤
 (8) 

And 𝛥𝑇′ = 𝑇𝑤 − 𝑇𝑔 +
𝑃𝑤−𝑃𝑔

268900−𝑃𝑤
 . 𝑇𝑤  (9) 

Furthermore, the glass-water convective heat transfer is 

(Alawee et al., 2021; A. El-Sebaii & Khallaf, 2020): 

𝑄𝐶,𝑤−𝑔 = ℎ𝐶,𝑤−𝑔𝐴𝑤(𝑇𝑤 − 𝑇𝑔) (10) 

ℎ𝐶,𝑤−𝑔by (Kalidasa Murugavel, Sivakumar, Riaz Ahamed, 

Chockalingam, & Srithar, 2010). 

ℎ𝐶,𝑤−𝑔 = 0.884 [𝑇𝑤 −  𝑇𝑔 +  
𝑃𝑤 − 𝑃𝑔

268900 − 𝑃𝑤
 . 𝑇𝑤 ]

1/3

 (11) 

where 𝑃𝑤,𝑔  is partial pressure of water and glass is 

determined by Ref. (Malaeb et al., 2016). 

𝑃𝑤,𝑔 = 𝑒𝑥𝑝 [25.317 −  
5144

𝑇𝑤 𝑜𝑟 𝑔 + 273
] (12) 

On the other hand, the water-glass radiative heat transfer. 

𝑄𝑟,𝑤−𝑔 = 𝜎 𝜀𝑔 𝐴𝑤  [(𝑇𝑤)4 − (𝑇𝑔)
4

] (13) 

𝑄𝑒,𝑤−𝑔 by (Omara, Eltawil, & ElNashar, 2013). 

𝑄𝑒,𝑤−𝑔 = ℎ𝑒,𝑤−𝑔𝐴𝑤(𝑇𝑤 − 𝑇𝑔) (14) 

where ℎ𝑒,𝑤−𝑔 is  

ℎ𝑒,𝑤−𝑔 = 0.016237 . ℎ𝑐,𝑤−𝑔.
𝑃𝑤 − 𝑃𝑔

𝑇𝑤 − 𝑇𝑔
 (15) 

Also, 𝑄𝑟,𝑔−𝑠by (Omara et al., 2013). 

𝑄𝑟,𝑔−𝑠 = ℎ𝑟,𝑔−𝑠𝐴𝑔(𝑇𝑔 − 𝑇𝑠) (16) 

where ℎ𝑟,𝑔−𝑠is  

ℎ𝑟,𝑔−𝑠 = 𝜀𝑔𝜎
[(𝑇𝑔)

4
− (𝑇𝑠)4]

(𝑇𝑔 − 𝑇𝑠)
 (17) 

Finally, 𝑄𝑐,𝑔−𝑠by (Omara et al., 2013). 

𝑄𝑐,𝑔−𝑠 = ℎ𝑐,𝑔−𝑠𝐴𝑔(𝑇𝑔 − 𝑇𝑠) 

where ℎ𝑐,𝑔−𝑠is (Sarhaddi, 2018). 

(18) 

ℎ𝑐,𝑔−𝑠 =  2.8 +  3V for V ≤  5m/s (19) 

The hourly distillate is then determined by 

𝑚̇𝑒𝑤 =
ℎ𝑒,𝑤−𝑔(𝑇𝑤 − 𝑇𝑔)

ℎ𝑓𝑔
 (20) 

The latent heat of vaporization defined by (Al-Kayiem, 

Mohamed, & Gilani, 2023; Essa, Alawee, Mohammed, 

Abdullah, & Omara, 2021; G. Tiwari & Sahota, 2017). 

ℎ𝑓𝑔 = 2.4935 × 106[1 − (9.4779 × 10−4 × 𝑇𝑤)

+ (1.3132 × 10−7 × 𝑇𝑤
2)

− (4.7974 × 10−9 × 𝑇𝑤
3)] 

(21) 

Furthermore, the following relation was utilized to 

determine the thermal efficiency of the solar distiller (A. S. 

Abdullah et al., 2019). 

Ƞ𝑑 =
∑𝑚̇𝑒𝑤  ×  ℎ𝑓𝑔

∑𝐴 × 𝐼(𝑡)
 (22) 

Numerical simulations have been employed to 

hypothetically describe the square pyramid solar still with the 

following input parameters: The design parameters encompass 

the amount of leftover materials necessary to complete the 

pyramid, while climatic features comprise Qena's typical 

temperature and solar intensity in May 2023. Details regarding 

certain prerequisites for numerical calculations are outlined in 

Table 2. 

Table 2. Numerical model's parameters (A. El-Sebaii & Khallaf, 

2020). 

Parameter values Parameter values 

𝒌𝒘𝒂 
0.6405 (W/m. 

K) 
τ𝑤 0.05 

𝒄𝒑𝒘𝒂 4190 (J/kg. K) 𝜀𝑔 0.88 

𝛂𝒈 0.05 α𝑏 0.95 

𝛂𝒘 0.95 𝜎 
5.6669 × 10−8 w
/𝑚2. 𝑘4 

𝛕𝒈 0.9 v 
2 m/s for summer 

3 m/s for winter 

 

4. RESULTS AND DISCUSSION 

4.1. Analysis of pyramid solar still 

In Qena, Egypt, situated in the clear climate zone (Latitude: 

26.16°, Longitude: 32.71°), experiments were conducted and 

studied for the suggested system from January to May of 2023. 

The fluctuations in solar radiation, outside temperature, and 

humidity over time are depicted in Figure 4. The figure 

illustrates that the intensity of solar output increases in the 

morning and peaks at 13:00, reaching 970.4 W/m2. As the 

afternoon progresses, solar radiation gradually declines until it 

reaches its minimum value. The maximum ambient 

temperature and humidity recorded were 50.5°C and 25%, 

respectively. Figure 5 illustrates the variation between water 

and condensing cover temperatures in CPSS. The figure 

indicates that the maximum recorded basin water and 

condensing cover temperatures were 74°C and 66°C, 

respectively. Conversely, Figure 6 depicts the variation 

between water and condensing cover temperatures in MPSS. 

The maximum basin water and condensing cover temperatures 
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recorded were 79.5°C and 64°C, respectively. Furthermore, it 

is observed that the water-condensing cover temperature 

difference in MPSS was higher than in CPSS, leading to higher 

productivity in MPSS. All seawater in MPSS has been 

progressively distributed throughout its four basins. When the 

total quantity of saltwater is divided among the four basins, the 

total thermal capacity is divided accordingly, depending on the 

size of the evaporating water surface area in MPSS, which is 

larger than that of CPSS. The water in the four basins absorbs 

heat energy for evaporation significantly faster due to the 

division of thermal capacity. This results in increased 

productivity. 

 

Figure 4. Variation between outside condition with time. 

 

Figure 5. Variation between water and condensing cover 

temperatures in CPSS. 

 

Figure 6. Variation between water and condensing cover 

temperatures in MPSS. 

Figure 7 shows the variation in hourly yield between CPSS 

and MPSS over time. It is observed that the hourly yield of solar 

stills increases in the morning and reaches its maximum at 

15:00 for both MPSS and CPSS, when it is 560 and 475 mL/m2, 

respectively. As the afternoon progresses, the hourly yield 

progressively drops until it reaches its minimum value. 

Moreover, Figure 8 illustrates the variation in accumulated 

yield between CPSS and MPSS over time. It is observed that 

the accumulated yield of MPSS is higher than that of CPSS, 

recording 3415 ml/m2 and 2524 ml/m2, respectively, 

representing an increase of 35.3% over CPSS. Furthermore, the 

enhancement in the daily yield of MPSS is reflected in the 

average daily efficiency of both solar stills, recorded at 23.5% 

and 31.7%, respectively. Due to the low thermal capacity of 

each basin, the distribution of water's thermal capacity 

throughout the four-stepped basins has increased the distillate 

yield and average daily efficiency.  

 

Figure 7. Variation between hourly yield in CPSS and MPSS with 

time. 

 

Figure 8. Variation between accumulated yield in CPSS and MPSS 

with time. 

The hourly yield for MPSS and the analytical outcomes 

produced by the energy balance equation have been compared. 

Figure 9 illustrates the experimental/theoretical values of 

distillate output. The figure shows that there is compatibility 

between theoretical and experimental results. Analytical 

solutions for the hourly yield of freshwater are used to calculate 

the freshwater productivity for each condensing cover direction 

(East, West, South, and North). Figure 10 illustrates that the 

maximum yield of freshwater was gained for the northern 

condensing cover and recorded 1174 ml/m2. This occurred 

because the condensing cover recorded the lowest temperature 

throughout the day as shown in Figure 6, which resulted in a 

higher temperature difference between the water and the 

condensing cover. It is important to increase and enhance the 

evaporation-and-condensation process inside the pyramid-

solar-still. Finally, the TDS and pH levels for distilled water are 

in accordance with WHO recommendations for the quality of 

drinking water and were recorded at 122 ppm and 7.2, 

respectively. 
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Figure 9. Theoretical/experimental results of distillate output. 

 

Figure 10. Maximum yield of freshwater based on condensing cover 

direction. 

4.2. Economic analysis 

A solar desalination unit's distillate production cost is 

influenced by several variables. The size of the unit, site 

location, feed-water characteristics, the quality of the product 

water required, and the availability of qualified employees are 

all factors that influence capital and operational costs, hence 

affecting the total cost (Abed & Hachim, 2021),(Fath, El-

Samanoudy, Fahmy, & Hassabou, 2003; Singh & Sharma, 

2022), (Ahangar Darabi et al., 2022). 

𝐶𝑅𝐹 =
𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 (23) 

𝐹𝐴𝐶 = 𝑃 × 𝐶𝑅𝐹 (24) 

𝑆𝐹𝐹 =
𝑖

(1 + 𝑖)𝑛 − 1
 (25) 

𝐴𝑆𝑉 = 0.2 × P × SFF (26) 

𝐴𝑀𝐶 = 0.15 × 𝐹𝐴𝐶 (27) 

𝐴𝐶 = 𝐹𝐴𝐶 + 𝐴𝑀𝐶 − 𝐴𝑆𝑉 (28) 

𝐶𝑃𝐿 =
𝐴𝐶

𝑀
 (29) 

where P is the upfront investment for the desalination 

system, 𝑖 is the-interest rate each year (here, we'll estimate 

12%), and n is the expected lifespan in years (10 for simplicity's 

sake). The breakdown of the system costs is given in Tables 3 

and 4. 

Table 3. Costs of the components of MPSS. 

No Components Material Cost ($) 

1 Transparent 
 

Acrylic 65 $ 

2 Absorber (basin) galvanized iron 40 $ 

3 Insulator Glass wool 5 $ 

4 Sealant silicone rubber 3 $ 

5 paint Black paint 2 $ 

6 Total cost (P) 115 $ 

Table 4. Cost analysis result 

1 CRF (Capital recovery factor) 0.177 

2 FAC (Fixed annual cost) 20.355 

3 SFF (Sinking fund factor) 0.057 

4 P (Investment) 115 

5 ASV (Annual salvage value) 1.311 

6 AMC (Maintenance cost) 3.053 

7 AC (Annual cost) 22.097 

8 CPL (Cost of distilled water per liter) 0.0179 

4.2. A comparison between the current study and previous 

literature 

Table 5 displays the similarities and differences between the 

current experimental work and relevant works found in the 

public domain. The current findings are compared to those of 

five previous research studies in the table below. 

 

Table 5. Comparison of the current study and previous literature. 

Author Method/ location Yield/Increment % Efficiency CPL $/L 

(Saravanan & Murugan, 2020) 

square pyramid-solar-still with various vertical 

wick materials. 
33.1% 29.57% N/A 

(Kianifar, Zeinali Heris, & 

Mahian, 2012) 
pyramid-solar-still with small fan 3.05 N/A 0.042 

(Prakash & Jayaprakash, 2021) pyramid solar still with stepped basins system. 3.25 L/day 50.85% N/A 
(Sathyamurthy, Nagarajan, 

Subramani, Vijayakumar, & 

Mohammed Ashraf Ali, 2014) 

pyramid-solar-still with latent heat energy 

storage. 
35% N/A N/A 

(Kabeel et al., 2019) 

pyramid-solar-still with the absorber plate 

coated with TiO2 nanoparticle mixed with black 

paint 

6.25% N/A 0.0107 

Present study 
Passive pyramid-solar-still with four stepped 

basins 
35.3% 31.7% 0.0179 

 

5. CONCLUSIONS 

The experiments were carried out in Qena, Egypt. This 

paper includes a literature study, an experimental assessment, 

and a mathematical model of a modified pyramid-solar-still 

(MPSS) with a novel stepped basin area aimed at increasing 

freshwater production. The following are conclusions drawn 

from the research: 

• This study demonstrated that evaporation might be 

increased by using a stepped basin solar still to 

decrease the still's internal heat capacity. 
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• There is compatibility between theoretical and 

experimental results. The maximum yield of 

freshwater was achieved with the northern condensing 

cover, recording 1174 mL/m2. 

• The maximum yield of CPSS and MPSS recorded 

2524 and 3415 mL/m2, respectively. The stepped area 

enhanced the yield by 35.3% over the CPSS. 

• Average daily efficiency for the CPSS is 23.5%, 

whereas for the MPSS it is 31.7%. 

• Distilled water under the proposed system would cost 

0.0179 $ per liter.  

• Finally, the TDS and pH levels are in accordance with 

WHO recommendations for the quality of drinking 

water. 
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NOMENCLATURE 

A Area m2 

Cp Specific-heat [J/kg.K] 

g Gravity [m/s2] 

hfg Latent-heat [J/kg.k] 

I(t) Average-solar-radiation [W/m2] 

m ̇ Yield [L/m2.day] 

m Mass [kg] 

L Characteristic length [m] 

N Set of measured values [–] 

P Partial vapor pressure [N/m2] 

Q Heat transfer rate [J] 

Ra Rayleigh number 

Greek letters 

α Absorptivity 

β Thermal expansion coefficient 

ε Emissivity [-] 

∞ ambient condition 

Subscripts 

a Ambient 

b Basin 

c Convective 

E Eastern 

e Evaporative 

g Condensing cover 

N Northern 

r Radiative 

S Southern 

s Sky 

w Water 

W Western 
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