Document Type : Research Article

Authors

1 Department of Physics, School of chemical engineering and physical science, Lovely Professional University Phagwara P. O. Box: 144401, India.

2 Department of Mechanical Engineering, Govt. College of Technology, Coimbatore, P. O. Box: 641013, India.

Abstract

Recently, waste materials have garnered attention for their potential in providing clean and affordable energy through thermochemical conversion techniques. They play a significant role in transforming waste into eco-friendly energy, but the proper selection of materials is crucial for successful thermochemical conversion. The primary objective of this study is to assess combustion efficiency based on activation energy, utilizing TGA and DTG analysis. Rice husk (RH), low-density polyethylene (LDPE), and polyethylene terephthalate (PET) waste materials were chosen for investigation. Experiments were conducted at temperatures ranging from 25 °C to 600 °C, with varying heating rates of 10, 20, 30, and 40 °C min-1. The apparent activation energy of the feedstocks was determined using five different iso-conversional model-free approaches, namely Kissinger Akahira Sunose (KAS), Friedman, Flynn Wall Ozawa (FWO), Starink, and Tang methods. The apparent activation energy for rice husk, LDPE, and PET fell within the range of 113-123 kJ mol-1, 101-101 kJ mol-1and105-117kJmol-1, respectively This research also contributes to establishing Comprehensive Pyrolysis Index (CPI) values to identify suitable sources for pyrolysis and gasification. According to CPI results, temperatures between 500 to 600 °C are optimal for pyrolysis, and an increase in heating rate enhances the output of pyrolysis products. A higher CPI index is favorable for achieving both a high calorific value and increased hydrocarbon contents.

Keywords

Main Subjects

  1. Agnihotri, N., Gupta, G. K., & Mondal, M. K. (2022). Thermo-kinetic analysis, thermodynamic parameters, and comprehensive pyrolysis index of Melia azedarach sawdust as a genesis of bioenergy. Biomass Conversion and Biorefinery, 1-18. https://doi.org/10.1007/s13399-022-02524-y
  2. Acquah, G. E., Via, B. K., Fasina, O. O., Adhikari, S., Billor, S., & Eckhardt, L. G. (2017). Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass. PLoS ONE, 12(3), e0172999. https://dx.doi.org/10.1371/journal.pone.0172999.
  3. Akahira, T., & Sunose, T. (1971). Method of determining activation deterioration constant of electrical insulating materials (Research Report No. 16, pp. 22–23). Chiba Institute of Technology. https://doi.org/10.1016/j.softx.2019.100359
  4. Cai, J. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82, 2705-2715. http://dx.doi.org/10.1016/j.rser.2017.09.113
  5. Chen, W., Escalante, J., Chen, W., Tabatabaei, M., & Tuan, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy. Renewable and Sustainable Energy Reviews, 169, 112914. https://doi.org/10.1016/j.rser.2022.112914
  6. Keattch, C. (1995). Studies in the history and development of thermo-gravimetry. Journal of Thermal Analysis, 44(5), 1211-1218. https://doi.org/10.1007/BF01905580
  7. Kumar, M., Sabharwal, S., Mishra, P. K., & Upadhyay, S. N. (2019). Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresource Technology, 279, 262-270. https://doi.org/10.1016/j.biortech.2019.01.137
  8. Kumar, M., Upadhyay, S. N., & Mishra, P. K. (2020). Effect of montmorillonite clay on pyrolysis of paper mill waste. Bioresource Technology, 307, 123161. https://doi.org/10.1016/j.biortech.2020.123161
  9. Nawaz, A., & Kumar, P. (2022). Pyrolysis behavior of low-value biomass (Sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic, and prediction modeling using artificial neural network. Renewable Energy, 200, 257–270. https://doi.org/10.1016/j.renene.2022.09.110
  10. (2016). Thermogravimetric analysis (Report No. 21). Retrieved from https://nptel.ac.in/courses/115103030/21
  11. Olszak-Humienik, M., & Mozejko, J. (2000). Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochimica Acta, 344(1-2), 73–77. https://doi.org/10.1016/S0040-6031(99)00329-9
  12. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886. https://doi.org/10.1246/bcsj.38.1881
  13. Rahman, M., Henriksen, U. B., & Ahrenfeldt, J. (2020). Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications. Energy, 204, 117944. https://doi.org/10.1016/j.energy.2020.117944
  14. Rahman, M. (2022). Test and performance optimization of nozzle inclination angle and swirl combustor in a low-tar biomass gasifier: A biomass power generation system perspective. Carbon Resources Conversion, 5(2), 139-149. https://doi.org/10.1016/j.crcon.2022.01.002
  15. Ruvolo-Filho, A., & Curti, P. S. (2006). Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste (polyethylene terephthalate) in non-aqueous ethylene glycol solution. Industrial & Engineering Chemistry Research, 45, 7985–7996. https://doi.org/10.1021/ie060528y
  16. Singh, R. K., Patil, T., & Sawarkar, A. N. (2020). Pyrolysis of garlic husk biomass: Physicochemical characterization thermodynamic and kinetic analyses. Bioresource Technology Reports, 12, 100558. https://doi.org/10.1016/j.biteb.2020.100558
  17. Singh, R. K., Ruj, B., & Evrendilek, F. (2016). Time and temperature dependent fuel gas generation from pyrolysis of real-world municipal plastic waste. Fuel, 174, 164–171. https://doi.org/10.1016/j.fuel.2016.01.049
  18. Vyazovkin, S., & Wight, C. A. (1998). Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. International Reviews in Physical Chemistry, 17(3), 407-433. https://doi.org/10.1080/014423598230108
  19. Vyazovkin, S., Burnham, A. K., Favergeon, L., Koga, N., Moukhina, E., P´erez-Maqueda, L. A., & Sbirrazzuoli, N. (2020). ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochimica Acta, 689, 178597. https://doi.org/10.1016/j.tca.2020.178597
  20. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  21. Zhang, J., Liu,J., Evrendilek, F., Zhang, X., & Buyukada, M. (2019). TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic, thermodynamic, and machine-learning models. Energy Conversion and Management, 195, 346–359. https://doi.org/10.1016/j.enconman.2019.05.019
  22. Zhang, L., Xu, C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969-982. https://doi.org/10.1016/J.ENCONMAN.2009.11.038