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A B S T R A C T  
 

Renewable energy provides twenty percent of electricity generation worldwide. Hydroelectric power is the 
cheapest way to generate electricity today. It is a renewable source of energy and provides almost one-fifth of 
electricity in the world. Also, it generates electricity using a renewable natural resource and accounting for six 
percent of worldwide energy supply or about fifteen percent of the world’s electricity. Hydropower is 
produced in more than 150 countries. Hydropower plant producers provide energy due to moving or falling 
water. This paper presents and discusses studies on hydroelectric power plant fields, which have been carried 
out by different investigators. This work aims to study and provide an overview of hydroelectric power plants 
such as applications, control, operation, modeling and environmental impacts. Also, the hybrid power and 
efficiency of the hydroelectric power plants has been investigated. The applications of a flexible AC 
transmission system (FACTS) controller in the power system with the hydroelectric power plants are 
presented. 

1. INTRODUCTION1 

Sustainability is one of the most important benefits of using 
renewable energy and, therefore, never disappears [1,2]. Vital 
renewable energies are one of the most interesting fields in 
engineering for numerous reasons [3,4]. Renewable energies 
such as wind energy [5,6], solar energy [7,8], and water power 
[9,10] vary widely in their cost effectiveness and are 
important in the world [11,12]. Even more importantly, 
renewable energy produces little or no waste products, hence 
minimal impact on the environment [13,14]. The nominal 
capacity of Iranian power plants by type of power plant in 
2013-2014 and 2017-2018 is shown in Table 1. 
   Renewable energies have been widely adopted as 
alternatives to fossil fuels [15,16]. Instead of fossil fuels, 
renewable energies are used widely [17,18]. There is a world-
wide requirement of hydropower turbines for peak load 
operation at increasing heads and for low head turbines 
operating with large head variations [19, 20]. 
   Nowadays, hydropower has become the best source of 
electricity, which is widely utilized all over the world [21,22]. 
An installed capacity of supplied hydroelectric power is 
approximately 20 % of the world's electricity and accounts for 
about 80 % of electricity from renewable energy sources. 
Hydroelectricity, a clean and renewable energy source, has 
many economic, technical, and environmental benefits 
[23,24]. Basically, hydroelectric power generation is 
performed in compliance with the law of conservation of 
energy, where kinetic energy that results from the movement 
of the mass of water from the river is translated into electricity 
[25,26]. 
   The main applications of a typical hydroelectric power plant 
include the generation of electric power, controlling of water 
flow in the rivers to create pondage, and storage of drinking 
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water supply. Hydropower plants have essentially five major 
components: storage reservoir, intake tunnel, surge tank, 
penstock, and hydro turbine. A hydropower plant scheme is 
shown in Fig. 1 [27,28]. 
   Many papers have been published in the field of applications 
and operation of hydroelectric power plants [29,30]. These are 
classified as (a) load frequency control in hydropower systems 
[31,32], (b) mathematical modeling of hydro turbine [33,34], 
(c) applications of FACTS devices in power system with 
hydropower plant [35], (d) hydropower plant control [36,37], 
(e) hydraulic turbine governing system [38], (f) coordination 
between the water energy and else renewable energy [39,40], 
and (g) impact on the environment [41,42]. 

 

 
Figure 1. Components of a hydropower plant. 

 
   This paper reviews the operation and control of 
hydroelectric power plants. The present paper is organized in 
thirteen sections. Section 1 briefly reviews hydropower plants. 
Steps in the production of electricity in the hydropower plant 
are shown in Section 2. Section 3 briefly discusses the basic 
operating principles of the hydraulic turbine. Section 4 shows 
the model of the turbine. In hydro plants where the distance 
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between the reservoir and the turbine is quite large, a surge 
tank is usually utilized, as described in Section 5. One of the 
most important components of hydropower plant is hydraulic 
turbine regulating system (HTRS), which is explained in 
Section 6. Environmental impacts of hydroelectric power 
plants are shown in Section 7. Hydropower installations can 

have many environmental impacts by changing the 
environment and affecting land use, as described in Section 8. 
The differences between water and conventional power 
generations are given in Section 9. The efficiency of 
hydroelectric power plants is investigated in Section 10. 

 
Table 1. Nominal capacity of Iranian power plants. 

Plants 
2013-2014 2017-2018 

Manufacturing (MW) Total percentage Manufacturing (MW) Total percentage 
Steam 15830 22 % 15829 20.1 % 

Combined cycle 17850 25 % 23166 29.4 % 
Hydropower 10265 15 % 11942 15.1 % 

Gas 24715 35 % 26200 33.2 % 
Diesel - nuclear and renewable 1620 3 % 1761 2.2 % 

Total 70280 100 % 78899 100 % 
 
   Hybrid power (combination of different technologies to 
produce power) is provided in Section 11. The applications of 
FACTS controller in power system with hydroelectric power 
plant are present in Section 12. The response of the hydraulic 
generating unit to a small change in load demand is shown in 
Section 13. The impact of the hydropower plant on the 
microgrid is shown in Section 14. Finally, concluding remarks 
are given in Section 15. 
 
2. HYDROPOWER PLANTS CLASSIFICATION 

In order to respond to the increasing demand for electricity, 
most countries give priority to its development and, 
accordingly, build many hydropower plants [43,44]. 
   Hydropower plants based on quantity are classified as 
reservoir plants, pumped storage plants [45,46], and run-of-
river plants. 
   According to the extent of water flow regulation, such plants 
may be classified into three categories: runoff river power 
plants without pondage, runoff river power plants with 
pondage, and reservoir power plants. The available head is an 
important determinant, and the head and capacity together 
largely determine the type of plant and installation. As per 
height of water or water head hydroelectric power plant can be 
divided into three categories: low head (Fig. 2), medium head 
(Fig. 3), and high head (Fig. 4) [47]. 
   Generally, the grouping of hydroelectric power plants is 
shown in Fig. 5 [48,49]. 

 

 
Figure 2. Low head power plant. 

 
2.1. Based on head 

There are three types of hydroelectric power plants based on 
the height of water available in the reservoir: low-head, 

medium-head, and high-head. The available water head in the 
low head is less than 30 m and in the medium head is more 
than 30 m, but is less than 300 m. However, the head of water 
available for producing electricity in high head is more than 
300 m and can extend even up to 1000 m. 

 

 
Figure 3. Medium head power plant. 

 
 

 
Figure 4. High head power plant. 

 
   A design technique based on optimal pole shift theory to 
control a low-head hydropower plant connected as a single 
machine to an infinite bus (SMIB) system was presented in 
[50], in which a state-space model with two-input and two-
output variables was considered. The dynamic stability 
analysis of an islanded power system regarding the installation 
of a reversible hydropower plant for increasing renewable 
energy integration was shown in [51], in which these 
simulation results showed that the high-head hydropower 
installation provided a marginal contribution to system 
frequency regulation when explored in turbine operation 
mode, leading to a reversible power station with a single 
penstock. 
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2.2. Based on nature load 

According to the nature of load, there are three types of 
hydroelectric power plants: base load plants, peak load plants, 
and pumped storage plant. 
   Base load plants are required to supply constant power to 
the grid. They are remotely controlled mostly and run 
continuously without any interruptions. 

The supply of power during peak load is done through the 
peak load plant. They only work during certain hours of the 
day when the load is more than the average. 
   Pumped storage hydroelectric power plants are one of the 
most applicable energy storage technologies on large-scale 
capacity generation due to many technical considerations, thus 
maintaining the following loads in case of high penetration of 
renewables in the electrical grid [52]. 

 

 
Figure 5. Showing the classification overview of hydroelectric power plants. 

 
2.3. Based on surge tank types 

Various types of surge tanks used in the hydropower water 
conveyance system are given as follows: simple surge tank, 
restricted orifice surge tank, differential surge tank, gallery 
type surge tank, and inclined surge tank [53,54]. 
   The setting condition of the downstream surge tank of 
hydropower station with sloping ceiling tailrace tunnel was 
studied in [55], in which the flow inertia of penstock 
corresponding to the endpoint of inequality interval is the 
allowable value of flow inertia where the downstream surge 
tank is not necessary to set. By using the second version of 
non-dominated sorting genetic algorithm, the closing law of 
wicket-gates and the surge tank position at a pumped storage 
power plant were optimized in [56], showing that the 
maximum rise and fall in the water level of surge tank 
decreased by 5.2 % and 7 %, respectively. 

3. POWER PRODUCTION STEPS 

Figure 6 shows the main energy transformation at the 
hydroelectric power plant. 
   At a hydroelectric power plant, water turns into electricity, 
which is carried to consumers along a transportation and 
distribution network. The power generation steps are 
illustrated in Fig. 7 [57]. 
 
1. HYDRAULIC TURBINE 

A hydraulic turbine is the prime mover of hydropower 
development. It is a mechanical device that converts the 
potential energy of water into rotational mechanical energy. 
Hydro turbine plants exhibit complex dynamics, having 
parameters that vary significantly with changes in operating 
conditions. Classification of hydraulic turbines is shown in 
Fig. 8 [58]. 
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Figure 6. Main energy transformation. 

 
4.1. Based on pressure change 

Another common classification of hydro turbines is based on 
pressure change: impulse or reaction type that describes how 
the turbine transforms potential water energy into rotational 
mechanical energy [59,60]. 

The two main types of reaction turbine are the propeller (with 
Kaplan variant) and Francis turbines. Three main types of 
impulse turbine are in use: the Pelton, the Turgo, and the 
Crossflow. 
 
4.2. Based on inelt head 

Head is the height difference between where the water enters 
into the hydro system and where the former leaves the latter. 
Based on the head at the inlet of turbine, the hydraulic turbine 
is divided into low-head [61,62], medium head, and high-head 
[63]. Generally, for high heads, Pelton turbines are used, 
whereas Francis turbines are used to exploit medium heads 
[64,65]. For low heads, common Kaplan [66,67] and bulb 
turbines are applied [68]. The comparative results of the 
turbine performance based on head are summarized in Table 
2. 
 
4.3. Based on specific speed 

The specific speed value of a turbine is the speed of a 
geometrically similar turbine, which would produce unit 
power (1 KW) under unit head (1 m). 

 

 
Figure 7. Steps in production of electricity at hydropower plant. 

 
   Turbine types can be classified by their specific speed, 
which always applies at the point of maximum efficiency. In 
the range of 1 to 20, impulse turbines are appropriate. In the 
range of 10 and 90, Francis-type runners should be selected. 
For up to 110, Deriaz turbines may be suitable. If speed 
ranges from 70 to the maximum of 260, propeller or Kaplan 
turbines are appropriate. 
 
2. TURBINE MODEL 

Several models of hydropower generation were investigated 
by scientists. Due to increasing the size and complexity of 
interconnected systems, hydraulic turbine generator units are 
applied increasingly to grant the control system needs. The 
block diagram of Fig. 9 shows the basic elements of a hydro 
turbine within the power system environment [69]. A number 

of different models for hydraulic turbines and their speed 
controllers were presented in [70]. 
   Figure 10 shows the relationship between parameters in a 
hydropower plant. 
   The turbine and water channel characteristic is determined 
by assuming the rigidity of the gutter and the incompressible 
water flow regardless of the impact of the bump tank or the 
existence of a large bump tank based on the blocks shown in 
Figs. 11, 12, and 13. 
   The turbine gain relating ideal gate opening (G) to real gate 
opening (g) is given by: 

NLFL
t GG

1
g
GA

−
==                                                           (1) 

where GFL and GNL are the gate opening at rated load and no 
load, respectively. qNL is no-load flow. 

https://www.merriam-webster.com/dictionary/efficiency
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Figure 8. Classifications of hydraulic turbines. 

 
 

Table 2. Characteristics of the turbine base on head. 

Head High head 
(more than 50 m) 

Medium head 
(between 15 m and 50 m) 

Low head 
(less than 15 m) 

Turbines Low-speed Francis, Pelton 
Normal-speed Francis, 

Kaplan, fixed-blade propeller 
tubular turbine 

Kaplan or fixed-blade 
propeller tubular turbine 

Topographical conditions Mountainous region 
Hilly country 

(mountainous region) Flat land 

Character of storage Seasonal annual or over-year 
storage 

Daily or weekly poundage 
(storage) 

No or daily pondage 

Characterization of 
economies 

Production cost being 
relatively low 

Production cost being 
relatively moderate 

Production cost being 
relatively high 

 
 

 
Figure 9. Functional block diagram showing the relationship between hydro prime mover system and controls to complete system. 
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Figure 10. Relationship between parameters in hydropower plant. 

 

 
Figure 11. Block diagram based on water velocity equation. 

 
 

 
Figure 12. Block diagram based on blue turbine power equation. 

 
 

 
Figure 13. Block diagram based on water column acceleration 

equation. 
 
Figure 14 shows the block diagram of the hydraulic turbine. 
Transfer function F(s) that represents the hydraulic system is 
the water velocity to head at turbine. F(s) represents a 
distributed parameter system. The complete hydraulic system 
conversion function that determines the relationship between 
water speed and turbine height is: 

)s(F)s(F
Z

)s(F)s(F
1

)s(H
)s(U

)s(F
21p

2
P

21

t

t

++φ

+

−==                                           (2) 

where φp is the channel friction coefficient, and Zp is the 
channel hydraulic impedance. 
   The conversion function of the tunnel and bump tank shows 
the ratio of the bump tank height (HS) to the water velocity of 
the upper channel (UP): 

2
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=−=                                 (3) 

where TS is the bump tank lift time, TWC is the tunnel start 
time, and φC is tunnel friction coefficient. If there is no bump 
tank, the function F1(s) is zero. 
   The F2(s) in terms of channel elastic stretching time (Tep) 

and channel hydraulic impedance is given by: 

)sTtanh(Z)s(F epP2 =                                                                   (4) 

   The application of a nonlinear controller based on a 
feedback linearization scheme to the multi-input multi-output 
model of a system consisting of a synchronous generator and a 
hydraulic turbine was described in [71]. 
 
3. SURGE TANK 

A surge tank is a stand pipe or storage reservoir at the dam to 
absorb sudden rises of pressure and to quickly provide extra 
water during a brief drop in pressure [72]. The surge tank 
mitigates pressure variations due to rapid changes in the 
velocity of water. Surge tanks are usually provided at high or 
medium-head plants when there is a considerable distance 
between the water source and the power unit, necessitating a 
long penstock [73,74]. 
   The main functions of a surge tank are given below: (a) it 
reduces the amplitude of pressure fluctuations by reflecting 
the incoming pressure waves and (b) it improves the 
regulation characteristic of a hydraulic turbine. Some of the 
most common different types of surge tanks that are possible 
to be installed are simple surge tank, restricted orifice surge 
tank, and differential surge tank. 
   The surge tank model is shown in Fig. 15, in which TW is 
water starting time, CS is the storage constant of the surge 
tank, hS is surge tank head, qS is flow into the surge tank, qT is 
flow down the upper tunnel, and qP is flow to turbine [75]. 
   A model of a hydro-turbine system with the effect of surge 
tank based on state-space equations to study the nonlinear 
dynamical behaviors of the hydro-turbine system was 
presented in [76], in which both theoretical analysis and 
numerical simulations show chaotic oscillations. The 
simulation of a hydroelectric power plant equipped with a 
Francis turbine, which has a high-water head and a long 
penstock with upstream and downstream surge tanks, was 
given in [77]. 
 
4. HYDRAULIC TURBINE GOVERNING SYSTEM 

A crucial control system of hydropower plant is the hydraulic 
turbine governing system (HTGS) [78,79]. It plays a key role 
in maintaining safety, stability, and economic operation of 
hydropower generating units [80,81]. 
   The HTGS is a complex nonlinear, multivariable, time-
variant system in nature, and non-minimum phase system that 
involves the interactions among hydraulic system, mechanical 
system, and electrical system [82,83]. The modeling of HTGS 
is an important and difficult task [84,85]. 

https://en.wikipedia.org/wiki/Hydraulic_head
https://en.wikipedia.org/wiki/Penstock
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Figure 14. Hydraulic turbine block diagram. 

 
 

 
Figure 15. Surge tank model. 

 
The main task of the HTGS system is to adjust the power 
output to the grid and track the frequency of the grid in 
general [86,87]. It consists of five parts, that is, conduit 
system, hydro-turbine, governor, electrohydraulic servo 
system, and power generator [88,89]. In this system, turbine 
governor is the controller and hydroelectric generating unit is 
the controlled object [90,91]. The main difference between the 
hydroturbine governing system and the gas and steam turbine 
governing systems is that a higher force is required to move 
the control gate, since the water pressure and the frictional 
forces are high. To provide this force, two servomotors are 
used. A functional diagram of the HTGS is shown in Fig. 16 
[92,93]. 
   A number of papers have improved the behavior of the 
HTGS. In [94], the design and analysis of a robust PID 
controller for a hydraulic turbine generator governor using a 
frequency response technique was presented. In [95], an 
improved gravitational search algorithm was proposed and 
applied to solve the identification problem for HTGS under 
load and no-load running conditions, in which HTGS is 
modeled by considering the impact of turbine speed on water 
flow and torque. The Hamiltonian mathematical modeling and 
dynamic characteristics of multi-hydro-turbine governing 
systems with sharing common penstock under the excitation 

of stochastic and shock load were presented in [96] for 
improving the stability of hydropower stations. A gravitational 
search algorithm was introduced and applied in parameter 
identification of an HTGS in [97], where the developed 
optimization algorithm GSA was improved by a compound 
search strategy of particle swarm optimization. A fractional 
order mathematical model of an HTGS to analyze the 
nonlinear dynamic behaviors of the HTGS in the process of 
operation was presented in [98]. A grey prediction control 
method for turbine speed control system to solve the stability 
problem of power system in various perturbations was 
presented in [99]. The stability for the primary frequency 
regulation of the hydro-turbine governing system with surge 
tank was given in [100], where the nonlinear dynamic 
performance of the system under opening control mode and 
power control mode was investigated. A mathematical model 
of an HTGS was presented in [101], and the nonlinear 
dynamical behaviors of the system considering the process of 
load rejection transient were studied. 
   When the water valve opens to compensate for the increase 
in load by initially reducing the turbine pressure, a short initial 
change in the turbine occurs, which is opposite to changing 
the valve position. However, by accelerating the water and 
increasing its velocity in the water-conducting pipe, the water 
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pressure increases, increasing the generator's output power 
and ultimately the active power balance. Therefore, blue 
turbine governors must have significant transient loss, and to 
ensure optimal and sustained speed control performance, the 
blue unit governor needs a transient compensator. 

Figure 17 shows a block diagram of the governor of the blue 
turbine system for sustainability study. Two limiters are 
considered for the position of the water valve and the 
magnitude of its variations. 

 

 
Figure 16. Block diagram of hydroelectric generating regulating system. 

 
 

 
Figure 17. Block diagram Governor model of hydro turbine. 

 
5. ENVIRONMENTAL IMPACTS 

Hydropower does not pollute the water or the air. Water has a 
critical role in all environmental, social, and economic 
systems. Ecological impacts of hydroelectric power plants are 
large. They change natural watercourses and movement paths 
of wildlife around the plant and, thus, alter the ecosystem 
[102]. Hydropower plants can have positive and negative 
impacts on the socio-economic development of regions. 
Hydropower is clean. It prevents the burning of 22 billion 
gallons of oil or 120 million tons of coal each year. 
Hydropower does not produce greenhouse gasses or other air 
pollution. Hydropower leaves behind no waste. Reservoirs 
formed by hydropower projects in Wisconsin have expanded 

water-based recreation resources, and they support diverse, 
healthy, and productive fisheries. In fact, catch rates for game 
fish like walleye and smallmouth bass are substantially higher 
on hydropower reservoirs than natural lakes. Negative impact 
of dams are as follows: in flat basins, large dams cause 
flooding of large tracts of land, destroying local animals and 
habitats; people have to be displaced, causing a change in 
lifestyle and customs of -about 40 to 80 million people that 
have been displaced physically by dams worldwide; large 
amounts of plant life are submerged and decay anaerobically; 
the migratory patterns of river animals like salmon and trout 
are affected; dams restrict sediments that are responsible for 
the fertile lands downstream; saltwater intrusion into the 
deltas means that the saline water cannot be used for 
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irrigation; large dams are breeding grounds for mosquitoes 
and cause the spread of disease; dams serve as a heat sink, and 
the water is hotter than the normal river water. This warm 
water when released into the river downstream can affect 
animal life [103]. 
 
6. DIFFERENCES BETWEEN WATER AND 
CONVENTIONAL POWER GENERATIONS 

A power plant can be of several types based mainly on the 
type of fuel used. Based on power generation, three major 
classifications of power production on a reasonably large scale 
include hydroelectric power generation, thermal power 
generation, and nuclear power generation. Hydropower 
produces electricity twenty-four hours a day and has little 
environmental impact not like solar and wind energy which is 
not functional twenty-four hours per day [104,105]. The 
primary disadvantage of solar power is that it obviously 
cannot be created during the night. The power generated is 
also reduced during times of cloud cover (although energy is 
still produced on a cloudy day). 
   At a hydropower plant, in the frequency control mode, it is 
possible to save power, which is not the case for a wind power 
plant [106,107]. Compared with steam turbines, hydro 
turbines are easier and cheaper to control. Hydropower enjoys 
high efficiency. Conventional hydropower efficiency is about 
80 %. The thermal efficiency of thermal power plants is only 
30 %-50 %. 
 
7. HYDROPOWER PLANTS EFFICIENCY 

The conversion efficiency of a hydroelectric power station 
depends mainly on the type of water turbine. In general terms, 
efficiency is the output of a process compared to the input 
[108]. 
   In the context of a hydroelectric power plant, there are three 
types of efficiencies: operational efficiency, economic 
efficiency, and energy efficiency. The electricity is generated 
by moving water comes from large hydroelectric power plants 
and also from smaller ones such as mini-power and 
micropower plants. It is worth mentioning that more than     
90 % of the total hydropower generated in the European 
Union comes from large hydro. The installed capacity of a 
small hydroelectric power plant is generally a few MW (<5 
MW with an efficiency between 80 and 85 %). The 
conversion efficiency of a hydroelectric power plant depends 
mainly on the type of water turbine employed and can be as 
high as 95 % for large installations. Smaller plants with output 
powers less than 5 MW may have efficiencies between 80 and 
85 % [ 109,110]. 
   A method to calculate the cost of efficiency losses using a 
unit commitment dispatch in hydroelectric generators was 
presented in [111], demonstrating that costs can be 
comparable to the income of the generator in the short-term 
market. 
 
8. HYBRID POWER SYSTEM 

The output power of a renewable energy generator is highly 
affected by atmospheric conditions [112,113]. Therefore, a 
hybrid power system (including two or more input sources) 
has become the design trend for renewable energy processing, 
in which a constant output voltage and sustained power supply 
can be completed [114,115]. As mentioned earlier, hybrid 
systems can minimize the intermittency problem of renewable 

systems, which is important. Hybrid power system may or 
may not be in connection with the grid; therefore, they usually 
are not dependent on centralized grids and can be used in rural 
places [116,117]. 
   The load frequency control of an interconnected two-area 
power system under deregulated environment was presented 
in [118], where Area 1 is a thermal system having two 
generating companies and Area 2 is the hydrothermal system. 
A coordination methodology for wind and pumped-storage 
hydro units in the day-ahead operation planning of power 
systems was proposed in [119], where the pumped-storage 
unit can offset intra-hour wind energy imbalances with 
coordination and minimize wind energy curtailments. The 
wind market value in power systems where hydroelectric 
stations with large reservoirs prevail was assessed in [120]; 
when moving from 0 % to 30 % wind penetration, 
hydropower mitigates the value drop by a third. The 
competitive interactions between an autonomous pumped-
storage hydropower plant and a thermal power plant in order 
to optimize power generation and storage were studied in 
[121], where each type of the power plant individually tries to 
maximize its profit by adjusting its strategy. 
 
9. FACTS EFFECTS ON HYDROELECTRIC POWER PLANT 

FACTS controllers are static power-electronic devices 
installed in AC transmission networks to stability, increasing 
power transfer capability and controllability of the networks 
through series and/or shunt compensation [122,123]. They are 
used in the energy system [124]. 
   The analysis of automatic generation control of a two-area 
interconnected power system under the open market scenario 
in the presence of thyristor controlled phase shifter-based 
hydrothermal system in the continuous mode using the fuzzy 
logic controller was presented in [125]. The LFC of the 
interconnected two-area system with one area as multi-unit of 
all-hydro power system and the other as all thermal/ thermal-
hydro mixed were investigated in [126]. The authors 
presented a coordinated control between TCPS and SMES, 
with the gains of the integral controller in AGC loop and 
parameters of TCPS/ SMES being optimized by craziness-
based PSO. A static synchronous compensator along with a 
variable frequency drive for voltage and frequency control of 
a small-hydro turbine-driven self-excited induction generator 
system was proposed in [127], where the FACTS devices 
were used to control the terminal voltage through variable 
reactive power injection. 
 
10. RESPONSE GENERATING UNIT 

The governors of hydraulic units require transient droop 
compensation for stable speed control performance. The 
nature of the responses of generating units with a hydraulic 
turbine with reheat steam turbine and without reheat steam 
turbine when subjected to a step change in load is shown in 
Figs. 18, 19, and 20. 
   The simulation results show that the steady state speed 
deviation is the same for all three units considered, and there 
are significant differences in their transient response. 
 
11. HYDROPOWER PLANT IN MICROGRID 

A microgrid is a localized grouping of distributed energy 
resources, loads, energy storage devices, inverters, and 
protection devices [128-131]. There are different approaches 

http://www.electrical4u.com/thermal-power-generation-plant-or-thermal-power-station/
http://www.electrical4u.com/thermal-power-generation-plant-or-thermal-power-station/
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in the operation of microgrids [132-134]. A simplified 
microgrid system with (a) controllable generation like the 
generation diesel generators and load bank, (b) not 
controllable generation (limited) like the photovoltaic cell and 
wind turbine, and (c) distributed energy storage like batteries 
and supercapacitors is shown in Fig. 21 [135,136]. 
   A number of studies have investigated the application of the 
heyroplant power plant in the microgrid [137,138]. 
   A microgrid topology with two generators, one of which is 
driven by a small-hydro turbine and other driven by a small-
scale wind turbine, was studied in [139], demonstrating that 
the voltage and frequency of the system were regulated and 

the power-quality-related issues were also resolved in this 
microgrid. A control system to improve the parallel operation 
of two microhydro power plants, equipped with fix-speed 
turbines that drive induction generators, on an islanded 
microgrid was presented in [140], in which the proposed 
control method is a combination between active elements and 
passive ones. The modeling and control of a small hydro-
power plant for a DC microgrid based on passivity theory was 
presented in [141], where the electrical, mechanical, and 
hydraulic dynamics in the mathematical model of the plant 
were considered. 

 

 
Figure 18. Turbine valve/gate position. 

 
 

 
Figure 19. Mechanical power. 

 
 

 
Figure 20. Speed deviation. 
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Figure 21. Schematic of a microgrid with different connected energy sources. 

 
15. CONCLUSIONS 

Hydropower is generally available in remote areas. It is a 
major energy source among the renewable energy sources. 
Worldwide, about 20 % of all electricity is generated by 
hydropower. Most of the countries now have hydropower as 
the source of major electricity producers. Hydropower 
schemes are classified according to installed capacity, how 
dependent energy production is on available flow, head 
conditions, and potential for the scheme to be multi-purpose. 
   In this paper, an extensive literature review of the research 
of hydroelectric power plants was carried out. Therefore, 
hydropower is a sustainable and long-lasting source of energy. 
It produces a great amount of electricity. Dams can also be 
used for other purposes such as fishing and sports. All these 
advantages show the importance of hydropower electricity, 
which gives us a solution to the problems of this boom and 
gloom economy. 
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